Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013, Phytotherapy Research
…
6 pages
1 file
The n-hexane extract of Lovage root was found to significantly inhibit the growth of both Mycobacterium smegmatis mc 2 155 and Mycobacterium bovis BCG, and therefore a bioassay-guided isolation strategy was undertaken. (Z)-Ligustilide, (Z)-3-butylidenephthalide, (E)-3-butylidenephthalide, 3-butylphthalide, a-prethapsenol, falcarindiol, levistolide A, psoralen and bergapten were isolated by chromatographic techniques, characterized by NMR spectroscopy and MS, and evaluated for their growth inhibition activity against Mycobacterium tuberculosis H 37 Rv using the whole-cell phenotypic spot culture growth inhibition assay (SPOTi). Cytotoxicity against RAW 264.7 murine macrophage cells was employed for assessing their degree of selectivity. Falcarindiol was the most potent compound with a minimum inhibitory concentration (MIC) value of 20 mg/L against the virulent H 37 Rv strain; however, it was found to be cytotoxic with a half-growth inhibitory concentration (GIC 50) in the same order of magnitude (SI < 1). Interestingly the sesquiterpene alcohol a-prethapsenol was found to inhibit the growth of the pathogenic mycobacteria with an MIC value of 60 mg/L, being more specific towards mycobacteria than mammalian cells (SI~2). Colony forming unit analysis at different concentrations of this phytochemical showed mycobacteriostatic mode of action.
2014
Background: Tuberculosis (TB) is a global burden with one-third of the world's population infected with the pathogen Mycobacterium tuberculosis complex and annually 1.4 million deaths occur due to the disease. This high incidence of infection and the increased rate of multi-drug resistant and extensively-drug resistant strains of the organism further complicated the problem of TB control and have called for an urgent need to develop new anti-TB drugs from plants. In this study, the in vitro activity of root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis were evaluated against M. tuberculosis and M. bovis strains. Methods: Five Ethiopian medicinal plants, root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis used locally for the management of TB. They were investigated for in vitro antimycobacterial activity against M. tuberculosis and M. bovis strains. 80% methanolic extracts of the plant materials were obtained by maceration. The antimycobacterial activity was determined using 96 wells of microplate with the help of visual Resazurin Microtiter Assay. Results: The crude 80% methanolic extracts of the root of C. aurea, seeds of O. basilicum, and leaves of A. abyssinica, C. macrostachyus, and E. camaldulensis had anti-mycobacterial activity with minimum inhibitory concentration (MIC) ranging from 6.25-100 μg/mL. The MIC of 80% methanol extracts in the order mentioned above ranged 25-100 μg/ml and 12.5-75 μg/mL, 25-100 μg/mL and 25-50 μg/mL, 6.25-50 μg/mL and 12.5-50 μg/mL, 12.5-100 μg/mL and 18.25-50 μg/mL and 6.25-50 μg/mL and 12.5-50 μg/mL, respectively for M. tuberculosis and M. bovis strains. Conclusions: The results support the local use of these plants in the treatment of TB and it is suggested that these plants may have therapeutic value in the treatment of TB. However, further investigations are needed on isolating chemical constituents responsible for eliciting the observed activity in these plants.
Química Nova, 2007
Recebido em 13/7/06; aceito em 10/4/07; publicado na web em 5/10/07 Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 μmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.
Background: Tuberculosis (TB) is a global burden with one -third of the world's population infected with the pathogen Mycobacterium tuberculosis complex and annually 1.4 million deaths occur due to the disease. This high incidence of infection and the increased rate of multi-drug resistant and extensively-drug resistant strains of the organism further complicated the problem of TB control and have called for an urgent need to develop new anti-TB drugs from plants. In this study, the in vitro activity of root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis were evaluated against M. tuberculosis and M. bovis strains.
Journal of Ethnopharmacology, 2016
Ethnopharmacological relevance: Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods: The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96 s AQ ueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results: Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 mg/mL against M. tuberculosis; Strain H37Ra (ATCC s 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient ¼0.8). Conclusion: The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis.
Journal of …, 2011
Ethnopharmacological relevance: Several medicinal plants are traditionally used in Mozambique to treat tuberculosis and related symptoms. Aims of the study: It was aimed to assess the in vitro antimycobacterial activity of crude extracts from fifteen medicinal plants and to reveal main classes of compounds which may account for the activity of extracts. Methods and materials: The plant materials were sequentially extracted by n-hexane, dichloromethane, ethyl acetate, and 70% ethanol. Decoction of each plant material was also prepared according to traditional use. Broth microdilution method was employed to screen extracts against two mycobacterial species: Mycobacterium smegmatis ATCC 607 and Mycobacterium tuberculosis H37Rv. The extracts with minimum inhibitory concentration(s) (MIC) below 125 g/mL were considered active and further tested against different mycobacterial species and strains, namely Mycobacterium tuberculosis H37Ra, Mycobacterium bovis BCG ATCC 35734, Mycobacterium smegmatis mc 2 155, Mycobacterium avium DSM 44156 and DSM 44157. Cytotoxic effect was evaluated against human macrophages from the monocytic THP-1 cells. Main classes of compounds in these active extracts were proposed from their 1 H NMR spectroscopic characterizations. Results: n-Hexane extracts of Maerua edulis and Securidaca longepedunculata, ethyl acetate extract of Tabernaemontana elegans and dichloromethane extract of Zanthoxylum capense were found to possess considerable activity against Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Ra with MIC 15.6-62.5 g/mL. Tabernaemontana elegans ethyl acetate extract displayed strong activity against Mycobacterium tuberculosis H37Rv (MIC 15.6 g/mL). Except for Tabernaemontana elegans ethyl acetate extract which presented potent cytotoxic effects in THP-1 cells (IC 50 < 4 g/mL), the other three plant extracts showed moderate to none toxicity. Based on 1 H NMR spectroscopic analysis, major components in both Maerua edulis and Securidaca longepedunculata n-hexane extracts were linear chain unsaturated fatty acids. Zanthoxylum capense dichloromethane extract contained more complex constituents (mostly phenolic compounds). In the most potent extract, Tabernaemontana elegans ethyl acetate extract, the prominent compounds were identified as indole alkaloids. Conclusions: The pronounced antimycobacterial activity of the medicinal plants Maerua edulis, Securidaca longepedunculata, Zanthoxylum capense, and Tabernaemontana elegans suggested that they might provide compounds which could be potential anti-TB drug leads.
BMC Complementary and Alternative Medicine, 2013
Background: Tuberculosis (TB) is a global burden with one -third of the world's population infected with the pathogen Mycobacterium tuberculosis complex and annually 1.4 million deaths occur due to the disease. This high incidence of infection and the increased rate of multi-drug resistant and extensively-drug resistant strains of the organism further complicated the problem of TB control and have called for an urgent need to develop new anti-TB drugs from plants. In this study, the in vitro activity of root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis were evaluated against M. tuberculosis and M. bovis strains.
Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy, 2006
Forty eight ethanolic crude extracts and fractions (hexane, dichloromethane, ethyl acetate and n-butanol) from ten Brazilian plants (Leguminosae, Monimiaceae and Verbenaceae), 1 from Costa Rica (Verbenaceae) and 1 from Argentina (Verbenaceae) were screened for anti-mycobacterium activity against Mycobacterium tuberculosis (ATCC-27294H37Rv), by the Alamar Blue test, at a fixed concentration of 100 µg/mL. Out of the forty eight, seven were active at this concentration, corresponding to Lantana trifolia (hexane and dichloromethane extracts from leaves), Vitex cooperi (methanol:water, 1:1 extract from barks), Lippia lacunosa (hexane and dichloromethane extracts from leaves) and Lippia rotundifolia (hexane and dichloromethane extracts from leaves), all from the Verbenaceae family.
International Journal of Herbal Medicine
Despite all of the control approaches, tuberculosis (TB) is a major cause of death worldwide and onethird of the world's population is infected with TB. Plant-derived medicines have been used in traditional medicinal system for the treatment of many ailments worldwide. From last number of years, plants have advantageous in different type of diseases producing in human beings. The present aim to carry out the evaluation of the antimycobacterial activity of selected eleven medicinal plants. Three different extracts were prepared and evaluated for its antimycobacterial activity against Mycobacterium smegmatis using Mycobacterial Growth Indicator Tube (MGIT) assay. The MGIT assay consists of liquid broth medium that is known to yield better recovery and faster growth of mycobacteria. Isoniazid was used as standard antituberculosis drug. The percentage for anti-mycobacterial smegmatis activity among tested eleven medicinal plants, aqueous extract of Oscimum sanctum, Adhatoda vasica, Leptadenia reticulata and Cocculus hirsutus shows good antimycobacterial activity. Among these four Leptadenia reticulata and Cocculus hirsutus shows potent inhibition as compared to isoniazid. Thus, its result supports the uses of these plants in traditional medicine and also helps to cure and prevent tuberculosis. It can further have studied using more specific methods for antimycobacterial activity.
Journal of Diseases and Medicinal Plants
Tuberculosis is an infectious disease that kills approximately three million people annually worldwide. The emergence of multidrug resistant, extensively drug resistant and lengthy therapy reduces the patient compliance and therefore comprises control strategies. In this study, the leaves of Terminalia ivorensis, Carapa procera, Fagara macrophylla, Anacardium occidentale, Ficus spp. and Drepanoalpha® (a polyherbal medicine to relieve sickle cell anaemia) were extracted with petroleum ether, ethyl acetate and methanol in order to screen potential bioactive compounds in different extracts and to assess their anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv and Mycobacterium tuberculosis spp. on Lowenstein-Jensen medium using a qualitative approach. The activity was determined as to whether there was growth or not. It was shown that only the methanolic extract displayed a good activity on both strains than the petroleum ether and ethyl acetate extracts. The presence of phytochemicals in plants such as alkaloids, flavonoids, tannins, saponins, anthocyanins and quinones known to be of medicinal importance pointed out a possible source for anti-mycobacterial agents to address the problem of multidrug resistance. The in vitro findings of this study provide a partial support for the use of these plants in the control of various infectious diseases as lead to drug discovery and should be reiterated and recommended for a clinical trial using an animal model.
Applied and Environmental Microbiology, 2008
The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 μg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis . The most effective compound was trans -cinnamaldehyde, with a MIC of 25.9 μg/ml, foll...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Canadian Journal of Microbiology, 2010
African Journal of Traditional, Complementary and Alternative Medicines, 2010
Revista Brasileira de Plantas Medicinais, 2015
Brazilian Journal of Microbiology, 2010
BMC Complementary and Alternative Medicine, 2017