Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Lecture Notes in Computer Science
…
12 pages
1 file
We study the complexity of the problem of finding nonplanar rectilinear drawings of graphs. This problem is known to be NPcomplete. We consider natural restrictions of this problem where constraints are placed on the possible orientations of edges. In particular, we show that if each edge has prescribed direction "left", "right", "down" or "up", the problem of finding a rectilinear drawing is polynomial, while finding such a drawing with the minimum area is NP-complete. When assigned directions are "horizontal" or "vertical" or a cyclic order of the edges at each vertex is specified, the problem is NP-complete. We show that these two NP-complete cases are fixed parameter tractable in the number of vertices of degree 3 or 4.
Lecture Notes in Computer Science, 2010
A rectilinear drawing is an orthogonal grid drawing without bends, possibly with edge crossings, without any overlapping between edges, between vertices, or between edges and vertices. Rectilinear drawings without edge crossings (planar rectilinear drawings) have been extensively investigated in graph drawing. Testing rectilinear planarity of a graph is NP-complete . Restricted cases of the planar rectilinear drawing problem, sometimes called the "no-bend orthogonal drawing problem", have been well studied (see, for example, ).
Lecture Notes in Computer Science, 2023
A rectangular drawing of a planar graph G is a planar drawing of G in which vertices are mapped to grid points, edges are mapped to horizontal and vertical straight-line segments, and faces are drawn as rectangles. Sometimes this latter constraint is relaxed for the outer face. In this paper, we study rectangular drawings in which the edges have unit length. We show a complexity dichotomy for the problem of deciding the existence of a unit-length rectangular drawing, depending on whether the outer face must also be drawn as a rectangle or not. Specifically, we prove that the problem is NP-complete for biconnected graphs when the drawing of the outer face is not required to be a rectangle, even if the sought drawing must respect a given planar embedding, whereas it is polynomial-time solvable, both in the fixed and the variable embedding settings, if the outer face is required to be drawn as a rectangle.
Lecture Notes in Computer Science, 2002
A plane graph is a planar graph with a fixed embedding in the plane. In a rectangular drawing of a plane graph, each vertex is drawn as a point, each edge is drawn as a horizontal or vertical line segment, and each face is drawn as a rectangle. A planar graph is said to have a rectangular drawing if at least one of its plane embeddings has a rectangular drawing. In this paper we give a linear-time algorithm to examine whether a planar graph G of maximum degree three has a rectangular drawing or not, and to find a rectangular drawing of G if it exists.
Journal of Graph Algorithms and Applications, 2013
A straight-line drawing of a planar graph G is a planar drawing of G, where each vertex is mapped to a point on the Euclidean plane and each edge is drawn as a straight line segment. A segment in a straight-line drawing is a maximal set of edges that form a straight line segment. A minimum-segment drawing of G is a straightline drawing of G, where the number of segments is the minimum among all possible straight-line drawings of G. In this paper we prove that it is NP-complete to determine whether a plane graph G has a straight-line drawing with at most k segments, where k ≥ 3. We also prove that the problem of deciding whether a given partial drawing of G can be extended to a straight-line drawing with at most k segments is NP-complete, even when G is an outerplanar graph. Finally, we investigate a worst-case lower bound on the number of segments required by straight-line drawings of arbitrary spanning trees of a given planar graph.
Journal of Graph Algorithms and Applications, 2013
A plane graph is a planar graph with a fixed planar embedding in the plane. In a box-rectangular drawing of a plane graph, every vertex is drawn as a rectangle, called a box, each edge is drawn as either a horizontal line segment or a vertical line segment, and the contour of each face is drawn as a rectangle. A planar graph is said to have a box-rectangular drawing if at least one of its plane embeddings has a box-rectangular drawing. Rahman et al. [11] gave a necessary and sufficient condition for a plane graph to have a box-rectangular drawing and developed a lineartime algorithm to draw a box-rectangular drawing of a plane graph if it exists. Since a planar graph G may have an exponential number of planar embeddings, determining whether G has a box-rectangular drawing or not using the algorithm of Rahman et al. [11] for each planar embedding of G takes exponential time. Thus to develop an efficient algorithm to examine whether a planar graph has a box-rectangular drawing or not is a non-trivial problem. In this paper we give a linear-time algorithm to determine whether a planar graph G has a box-rectangular drawing or not, and to find a box-rectangular drawing of G if it exists.
Theoretical Computer Science, 2019
A drawing of a graph is greedy if for each ordered pair of vertices u and v, there is a path from u to v such that the Euclidean distance to v decreases monotonically at every vertex of the path. From an application perspective, greedy drawings are especially relevant to support routing schemes in ad hoc wireless networks. The existence of greedy drawings has been widely studied under different topological and geometric constraints, such as planarity, face convexity, and drawing succinctness. We introduce greedy rectilinear drawings, where edges are horizontal or vertical segments. These drawings have several properties that improve human readability and support network routing. We address the problem of testing whether a planar rectilinear representation, i.e., a plane graph with prescribed vertex angles, admits a greedy rectilinear drawing. We give a characterization, a lineartime testing algorithm, and a full generative scheme for universal greedy rectilinear representations, i.e., those for which every drawing is greedy. For general greedy rectilinear representations, we give a combinatorial characterization and, based on it, a polynomial-time testing and drawing algorithm for a meaningful subset of instances.
Computational Geometry: Theory and Applications, 2000
This paper addresses the problem of finding rectangular drawings of plane graphs, in which each vertex is drawn as a point, each edge is drawn as a horizontal or a vertical line segment, and the contour of each face is drawn as a rectangle. A graph is a 2–3 plane graph if it is a plane graph and each vertex has degree 3 except the vertices on the outer face which have degree 2 or 3. A necessary and sufficient condition for the existence of a rectangular drawing has been known only for the case where exactly four vertices of degree 2 on the outer face are designated as corners in a 2–3 plane graph G. In this paper we establish a necessary and sufficient condition for the existence of a rectangular drawing of G for the general case in which no vertices are designated as corners. We also give a linear-time algorithm to find a rectangular drawing of G if it exists.
Lecture Notes in Computer Science, 2015
We give new results about the relationship between 1-planar graphs and RAC graphs. A graph is 1-planar if it has a drawing where each edge is crossed at most once. A graph is RAC if it can be drawn in such a way that its edges cross only at right angles. These two classes of graphs and their relationships have been widely investigated in the last years, due to their relevance in application domains where computing readable graph layouts is important to analyze or design relational data sets. We study ICplanar graphs, the sub-family of 1-planar graphs that admit 1-planar drawings with independent crossings (i.e., no two crossed edges share an endpoint). We prove that every IC-planar graph admits a straight-line RAC drawing, which may require however exponential area. If we do not require right angle crossings, we can draw every ICplanar graph with straight-line edges in linear time and quadratic area. We then study the problem of testing whether a graph is IC-planar. We prove that this problem is NPhard, even if a rotation system for the graph is fixed. On the positive side, we describe a polynomial-time algorithm that tests whether a triangulated plane graph augmented with a given set of edges that form a matching is IC-planar.
1998
Abstract. We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a generalization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach, and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation step; triangulation proves problematic in drawing graphs``nicely,''as it has the tendency to ruin the structure of the input graph.
Computational Geometry, 2005
Let C be the family of 2D curves described by concave functions, let G be a planar graph, and let L be a linear ordering of the vertices of G. L is a curve embedding of G if for any given curve Λ ∈ C there exists a planar drawing of G such that: (i) the vertices are constrained to be on Λ with the same ordering as in L, and (ii) the edges are polylines with at most one bend. Informally speaking, a curve embedding can be regarded as a two-page book embedding in which the spine is bent. Although deciding whether a graph has a two-page book embedding is an NP-hard problem, in this paper it is proven that every planar graph has a curve embedding which can be computed in linear time. Applications of the concept of curve embedding to upward drawability and point-set embeddability problems are also presented.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Lecture Notes in Computer Science, 2014
Algorithmica, 2012
Graph Algorithms and Applications 4, 2006
Journal of Graph Algorithms and Applications, 2018
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2020
Theoretical Computer Science, 1992
Journal of Graph Algorithms and Applications, 2009
Computational Geometry, 2010
Lecture Notes in Computer Science, 2013
SIAM Journal on Computing, 1988
Computational Geometry, 1998
Lecture Notes in Computer Science, 2014