Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013, EPJ Web of Conferences
…
10 pages
1 file
The theory of Quantum Mechanics is one of the mainstay of modern physics, a wellestablished mathematical clockwork whose strength and accuracy in predictions are currently experienced in worldwide research laboratories. As a matter of fact, Quantum Mechanics laid the groundwork of a rich variety of studies ranging from solid state physics to cosmology, from bio-physics to particle physics. The up-to-date ability of manipulating single quantum states is paving the way for emergent quantum technologies as quantum information and computation, quantum communication, quantum metrology and quantum imaging. In spite of the impressive matemathical capacity, a long-standing debate is even revolving around the foundational axioms of this theory, the main bones of content being the non-local eects of entangled states, the wave function collapse and the concept of measurement in Quantum Mechanics, the macro-objectivation problem (the transition from a microscopic probabilistic world to a macroscopic deterministic world described by classical mechanics). Problems that, beyond their fundamental interest in basic science, now also concern the impact of these developing technologies. Without claiming to be complete, this article provides in outline the living matter concerning some of these problems, the implications of which extend deeply on the connection between entanglement and space-time structure. a
2019
Quantum entanglement, a term coined by Erwin Schrodinger in 1935, is a mechanical phenomenon at the quantum level wherein the quantum states of two (or more) particles have to be described with reference to each other though these particles may be spatially separated. This phenomenon leads to paradox and has puzzled us for a long time. The behaviour of entangled particles is apparently inexplicable, incomprehensible and like magic at work. Locality has been a reliable and fruitful principle which has guided us to the triumphs of twentieth century physics. But the consequences of the local laws in quantum theory could seem "spooky" and nonlocal, with some theorists questioning locality itself. Could two subatomic particles on opposite sides of the universe be really instantaneously connected? Is any theory which predicts such a connection essentially flawed or incomplete? Are the results of experiments which demonstrate such a connection being misinterpreted? These questions challenge our most basic concepts of spatial distance and time. Modern physics is in the process of dismantling the space all around us and the universe will never be the same. Quantum entanglement involves the utilisation of cutting edge technology and will bring great benefits to society. This paper traces the development of quantum entanglement and presents some possible explanations for the strange behaviour of entangled particles. This paper is published in an international journal.
The purposes of the present article are: a) To show that non-locality leads to the transfer of certain amounts of energy and angular momentum at very long distances, in an absolutely strange and unnatural manner, in any model reproducing the quantum mechanical results. b) To prove that non-locality is the result only of the zero spin state assumption for distant particles, which explains its presence in any quantum mechanical model. c) To reintroduce locality, simply by denying the existence of the zero spin state in nature (the so-called highly correlated, or EPR singlet state) for particles non-interacting with any known field. d) To propose a realizable experiment to clarify if two remote (and thus non-interacting with a known field) particles, supposed to be correlated as in Bell-type experiments, are actually in zero spin state.
2012
Based on our model of quantum systems as emerging from the coupled dynamics between oscillating "bouncers" and the space-filling zero-point field, a sub-quantum account of nonlocal correlations is given. This is explicitly done for the example of the "double two-slit" variant of two-particle interferometry. However, it is also shown that the entanglement in two-particle interferometry is only a natural consequence of the fact that already a "single" two-slit experiment can be described on a sub-quantum level with the aid of "entangling currents" of a generally nonlocal nature.
(Typo Corrections and minor revisions 5-10-23) The conventional analysis of both quantum product states and quantum entanglement is shown to be consistent with a local, hidden variable (LHV) model, where two spatially separated observers make independent local measurements on local wave functions that share a common random hidden source variable. A conventional quantum mechanical LHV derivation also suggests that four quanta are required to truly measure a "zero spin" singlet state, with two quanta detected by each observer. In contrast, Bell local hidden variable (BLHV) models and inequalities assume one quantum detection by each observer, which does accurately model product states, but NOT entangled states. It is also shown that quantum entanglement can be viewed as an interference phenomenon, and can be factored into a "disentangled" product of local wave functions at the two spatially separated observers. Experimental measurements of quantum entanglement appear to be measuring Bell product states, and yet see quantum entanglement; which may suggest a non-local hidden variable (NLHV) process, where a detection by one observer instantaneously modifies the wave function in transit to the other observer. However, this proposed non-local process has serious potential flaws. Alternatively, it is shown that "coincidence of clicks" measurements on local, hidden variable (LHV) entangled or product states can approximate the experimentally reported entangled behavior. Additional experiments could potentially discriminate between these interpretations of the experimental data.
Physics Essays
In a recent Nature article, Hensen et al. reported that they have accomplished a "loophole-free" test of Bell's theorem. The authors speculated that further improvements in their experimental design could settle an 80 years debate in favor of quantum theory's stance that entanglement is "action at a distance". We direct attention to a spatial aspect of locality, not considered by Bell's Theorem nor by any of its experimental tests. We refer to the possibility that two particles distancing from each other could remain spatially disconnected, even when they have distanced enough to ensure that information between them was transmitted faster than the velocity of light. We show that any local-deterministic relativity theory which violates Lorentz's contraction for distancing bodies can maintain spatial locality. We briefly note that the recently proposed Information Relativity Theory satisfies the aforementioned condition, and that it predicts and explains several quantum phenomena, despite being local and deterministic. We conclude by arguing that quantum entanglement is not nonlocal and that the unnoticed spatial dimension of locality is in fact the hidden variable conjectured in the seminal EPR paper.
Foundations of Physics, 2009
Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.
Quantum Engineering, 2022
The entangled “measurement state” (MS), predicted by von Neumann to arise during quantum measurement, seems to display paradoxical properties such as multiple macroscopic outcomes. But analysis of interferometry experiments using entangled photon pairs shows that entangled states differ surprisingly from simple superposition states. Based on standard quantum theory, this paper shows that the MS (i) does not represent multiple detector readings but instead represents nonparadoxical multiple statistical correlations between system states and detector readings, (ii) implies that exactly one outcome actually occurs, and (iii) implies that when one outcome occurs, the other possible outcomes simultaneously collapse nonlocally. Point (iii) resolves an issue first raised in 1927 by Einstein who demonstrated that quantum theory requires instantaneous state collapse. This conundrum’s resolution requires nonlocal correlations, which from today’s perspective suggests the MS should be an entang...
2012
Starting from the late 60’s many experiments have been performed to verify the violation Bell’s inequality by Einstein–Podolsky–Rosen (EPR) type correlations. The idea of these experiments being that: (i) Bell’s inequality is a consequence of locality, hence its experimental violation is an indication of non locality; (ii) this violation is a typical quantum phenomenon because any classical system making local choices (either deterministic or random) will produce correlations satisfying this inequality. Both statements (i) and (ii) have been criticized by quantum probability on theoretical grounds (not discussed in the present paper) and the experiment discussed below has been devised to support these theoretical arguments. We emphasize that the goal of our experiment is not to reproduce classically the EPR correlations but to prove that there exist perfectly local classical dynamical systems violating Bell’s inequality. The conclusions of the present experiment are: (I) no contradi...
A simple explanation is given for the continuation of the singlet state over large distances in an EPRBA experiment. The paper answers this question with clocks ticking in synchronized frequencies that can be carried by the particles. The connection is an expression of relativity of the clock variables that represent the distant separated spins. PACS numbers: 03.65 Ud, 03.65 Pm
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of Computational and Theoretical Nanoscience, 2011
Foundations of Physics, 2015
Physica Scripta, 1998
Foundations of Science, 2021
arXiv: Quantum Physics, 2019
Ontos Verlag - de Gruyter, 2006
Scientific Reports, 2017
Scientific God Journal, 2011
Physical Review Research