Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2010, Physical Review Letters
…
4 pages
1 file
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics. PACS numbers: 03.67.Mn, 03.65.Ta
Journal of Modern Optics, 2009
Many experiments in quantum information aim at creating multi-partite entangled states. Quantifying the amount of entanglement that was actually generated can, in principle, be accomplished using full-state tomography. This method requires the determination of a parameter set that is growing exponentially with the number of qubits and becomes infeasible even for moderate numbers of particles. Non-trivial bounds on experimentally prepared entanglement can however be obtained from partial information on the density matrix. As introduced in [K.M.R. Audenaert and M.B. Plenio, New J. Phys. 8, 266 (2006)], the fundamental question is then formulated as: What is the entanglement content of the least entangled quantum state that is compatible with the available measurement data?
Applied Physics Letters, 2006
The experimental determination of entanglement is a major goal in the quantum information field. In general the knowledge of the state is required in order to quantify its entanglement. Here we express a lower bound to the robustness of entanglement of a state based only on the measurement of the energy observable and on the calculation of a separability energy. This allows the estimation of entanglement dismissing the knowledge of the state in question.
Physical Review A, 2002
We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements. 03.67.Dd, 03.67.Hk, A central aim in the physics of quantum information is to create and detect entanglement -the resource that allows to realize various quantum protocols. Recently, much progress has been achieved experimentally in creating entangled states . In every real experiment noise and imperfections are present so that the generated states, although intended to be entangled, may in fact be separable. Therefore, it is important to find efficient experimental methods to test whether a given imperfect state ρ is indeed entangled.
Open Systems & Information Dynamics, 2015
We formulate some properties of a set of several mutually unbiased measurements. These properties are used for deriving entropic uncertainty relations. Applications of mutually unbiased measurements in entanglement detection are also revisited. First, we estimate from above the sum of the indices of coincidence for several mutually unbiased measurements. Further, we derive entropic uncertainty relations in terms of the Rényi and Tsallis entropies. Both the state-dependent and state-independent formulations are obtained. Using the two sets of local mutually unbiased measurements, a method of entanglement detection in bipartite finite-dimensional systems may be realized. A certain trade-off between a sensitivity of the scheme and its experimental complexity is discussed.
Physical Review A, 2011
We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occuring in the generation of entanglement.
We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits or continuous variables.
Physical Review A, 2012
Academia Quantum, 2024
Complementary relationships exist among interference properties of particles such as pattern visibility, predictability, and distinguishability. Additionally relationships between average information gain G ̄ and measurement disturbance F for entangled spin pairs are well established. This article examines whether a similar complementary relationship exists between entanglement and measurement. For qubit systems, both measurements on a single system and measurements on a bipartite system are considered in regard to entanglement. It is proven that E ̄ + D ≤ 1 holds, where E ̄ is the average entanglement after a measurement is made and D is a measure of the measurement disturbance of a single measurement. Assuming measurements on a bipartite system shared by Alice and Bob, it is shown that E ̄ + G ̄ ≤ 1, where G ̄ is the maximum average information gain that Bob can obtain regarding Alice’s result. These results are generalized to arbitrary initial mixed states and non-Hermitian operators. In the case of maximally entangled initial states, it is found that D ≤ EL and G ̄ ≤ EL, where EL is the loss of entanglement due to measurement by Alice. We conclude that the amount of disturbance and average information gain one can achieve is strictly limited by entanglement.
2006
Entanglement witnesses provide tools to detect entanglement in experimental situations without the need of having full tomographic knowledge about the state. If one estimates in an experiment an expectation value smaller than zero, one can directly infer that the state has been entangled, or specifically multi-partite entangled, in the first place. In this article, we emphasize that all these tests -based on the very same data -give rise to quantitative estimates in terms of entanglement measures: "If a test is strongly violated, one can also infer that the state was quantitatively very much entangled". We consider various measures of entanglement, including the negativity, the entanglement of formation, and the robustness of entanglement, in the bipartite and multipartite setting. As examples, we discuss several experiments in the context of quantum state preparation that have recently been performed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Physical Review Letters, 2001
Scientific Reports
Physical Review A, 2021
Physical Review Letters, 2011
Physical Review A, 2014
Physical Review A, 2015
Annals of Physics, 2008
Physical Review A, 2000
Physical Review A, 2013
Physical Review A, 2013
arXiv (Cornell University), 2023
Physical Review A, 2017
Physical review letters, 2014
Physical Review A, 2015
Physical Review A, 2005
Physical Review Letters, 2010
arXiv (Cornell University), 2022
American Journal of Physics, 2014