Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Physical Review A
…
10 pages
1 file
We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occuring in the generation of entanglement.
Physical Review A, 2015
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state, and to establish tight upper and lower bounds on its amount. A novel element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal is the first to realize a universal two-qubit entanglement test within the present state of the art of quantum optics. PACS numbers: 03.67.Mn, 42.50.Dv
Physical Review Letters, 2010
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics. PACS numbers: 03.67.Mn, 03.65.Ta
Physical Review A, 2000
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
Scientific Reports
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit systems, is relevant to optimise the performance of quantum information processes. Here we present an experiment in which the amount of entanglement and discord are measured exploiting different estimators. Among them, some will prove to be optimal, i.e., able to reach the ultimate precision bound allowed by quantum mechanics. These estimation techniques have been tested with a specific family of states ranging from nearly pure Bell states to completely mixed states. This work represents a significant step towards the development of reliable metrological tools for quantum technologies.
arXiv (Cornell University), 2014
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
Physical Review A, 2002
We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements. 03.67.Dd, 03.67.Hk, A central aim in the physics of quantum information is to create and detect entanglement -the resource that allows to realize various quantum protocols. Recently, much progress has been achieved experimentally in creating entangled states . In every real experiment noise and imperfections are present so that the generated states, although intended to be entangled, may in fact be separable. Therefore, it is important to find efficient experimental methods to test whether a given imperfect state ρ is indeed entangled.
arXiv (Cornell University), 2022
Efficient certification and quantification of high dimensional entanglement of composite systems are challenging both theoretically as well as experimentally. Here, we demonstrate that several entanglement detection methods can be implemented efficiently in a Mach-Zehnder Interferometric setup. In particular, we demonstrate how to measure the linear entropy and the negativity of bipartite systems from the visibility of Mach-Zehnder interferometer using single copy of the input state. Our result shows that for any two qubit pure bipartite state, the interference visibility is a direct measure of entanglement. We also propose how to measure the mutual predictability experimentally from the intensity patterns of the interferometric setup without having to resort to local measurements of mutually unbiased bases. Furthermore, we show that the entanglement witness operator can be measured in a interference setup and the phase shift is sensitive to the separable or entangled nature of the state. Our proposals bring out the power of Interferometric setup in entanglement detection of pure and several mixed states which paves the way towards design of entanglement meter.
Physical review letters, 2014
We report an experiment in which one determines, with least tomographic effort, whether an unknown two-photon polarization state is entangled or separable. The method measures whole families of optimal entanglement witnesses. We introduce adaptive measurement schemes that greatly speed up the entanglement detection. The experiments are performed on states of different ranks, and we find good agreement with results from computer simulations.
Physical Review A, 2010
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projecting onto entangled states, we use a result of Walgate et al. to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum error discrimination of non-orthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Quantum information & computation
proposed a measure of multi-qubit entanglement that is a function on pure states. We find that this function can be interpreted as a physical quantity related to the average purity of the constituent qubits and show how it can be observed in an efficient manner without the need for full quantum state tomography. A possible realization is described for measuring the entanglement of a chain of atomic qubits trapped in a 3D optical lattice.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Optics Letters
Physical Review A, 2014
New Journal of Physics
Physical Review A, 2007
Physical Review A, 2010
Applied Physics Letters, 2006
Physical Review Letters, 2003
Physical Review A, 2001
American Journal of Physics, 2014
Journal of Modern Optics, 2009
Scientific Reports, 2015
EPL (Europhysics Letters), 2018
New Journal of Physics, 2012
Physical Review Letters, 2013