Academia.eduAcademia.edu

Capítulo 5 PROGRAMACIÓN DINÁMICA 5.1 INTRODUCCIÓN

Abstract

Existe una serie de problemas cuyas soluciones pueden ser expresadas recursivamente en términos matemáticos, y posiblemente la manera más natural de resolverlos es mediante un algoritmo recursivo. Sin embargo, el tiempo de ejecución de la solución recursiva, normalmente de orden exponencial y por tanto impracticable, puede mejorarse substancialmente mediante la Programación Dinámica. En el diseño Divide y Vencerás del capítulo 3 veíamos cómo para resolver un problema lo dividíamos en subproblemas independientes, los cuales se resolvían de manera recursiva para combinar finalmente las soluciones y así resolver el problema original. El inconveniente se presenta cuando los subproblemas obtenidos no son independientes sino que existe solapamiento entre ellos; entonces es cuando una solución recursiva no resulta eficiente por la repetición de cálculos que conlleva. En estos casos es cuando la Programación Dinámica nos puede ofrecer una solución aceptable. La eficiencia de esta técnica consiste en resolver los subproblemas una sola vez, guardando sus soluciones en una tabla para su futura utilización. La Programación Dinámica no sólo tiene sentido aplicarla por razones de eficiencia, sino porque además presenta un método capaz de resolver de manera eficiente problemas cuya solución ha sido abordada por otras técnicas y ha fracasado. Donde tiene mayor aplicación la Programación Dinámica es en la resolución de problemas de optimización. En este tipo de problemas se pueden presentar distintas soluciones, cada una con un valor, y lo que se desea es encontrar la solución de valor óptimo (máximo o mínimo). La solución de problemas mediante esta técnica se basa en el llamado principio de óptimo enunciado por Bellman en 1957 y que dice: "En una secuencia de decisiones óptima toda subsecuencia ha de ser también óptima". Hemos de observar que aunque este principio parece evidente no siempre es aplicable y por tanto es necesario verificar que se cumple para el problema en cuestión. Un ejemplo claro para el que no se verifica este principio aparece al tratar de encontrar el camino de coste máximo entre dos vértices de un grafo ponderado.