Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2014, International Journal of Advance Research In Science And Engineering (IJARSE), India, ISSN 2319-8346 (P), ISSN-2319-8354(E), Vol.3, Issue 7, Pages 261- 274
Optical character recognition, usually abbreviated to OCR, is the mechanical or electronic conversion of scanned or photographed images of typewritten or printed text into machine-encoded/computer-readable text. It is widely used as a form of data entry from some sort of original paper data source, whether passport documents, invoices, bank statement, receipts, business card, mail, or any number of printed records. It is a common method of digitizing printed texts so that they can be electronically edited, searched, stored more compactly, displayed on-line, and used in machine processes such as machine translation, text-to-speech, key data extraction and text mining. OCR is a field of research in pattern recognition, artificial intelligence and computer vision. Optical Character Recognition or OCR is the electronic translation of handwritten, typewritten or printed text into machine translated images. It is widely used to recognize and search text from electronic documents or to publish the text on a website [1]. A large number of research papers and reports have already been published on this topic. The paper presents introduction, major research work and applications of Optical Character Recognition in various fields. At the first introduction of OCR will be discussed and then some points will be stressed on the major research works that have made a great impact in character recognition. And finally the most important applications of OCR will be covered and then conclusion.
Vol. 19 No. 2 FEBRUARY 2021 International Journal of Computer Science and Information Security (IJCSIS), 2021
This paper provides a total overview of OCR. Optical character recognition is nothing but the ability of the computer to collect and decipher the handwritten inputs from documents, photos or any other devices. Over these many years, many researchers have been researching and paying attention on this topic and proposed many methods which can be solved. This research provides a historical view and the summarization of the research which done on this field.
2021
Optical Character Recognition (OCR), is that the process of conversion of image text or handwritten text into machine understandable form. Simply OCR means conversion of characters that is recognized and convert it into computer readable form. It is widely used as a kind of data entry from original paper data sources such as banking papers or consultation papers, whether passport documents, invoices, statement, receipts, card, mail or any number of printed records. It is a standard method of digitizing printed texts in order that they will be electronically edited, searched, and stored more compactly. OCR is the field of research in Pattern Recognition, Artificial Intelligence and Computer Vision. OCR is that the electronic translation of handwritten, type written or printed text into machine translated images. It is widely used to recognize and search text from documents or to publish the text on a website. This document represents review of Optical Character Recognition methods su...
2017
Optical Character Recognition (OCR) has been a topic of interest for many years. It is defined as the process of digitizing a document image into its constituent characters. Despite decades of intense research, developing OCR with capabilities comparable to that of human still remains an open challenge. Due to this challenging nature, researchers from industry and academic circles have directed their attentions towards Optical Character Recognition. Over the last few years, the number of academic laboratories and companies involved in research on Character Recognition has increased dramatically. This research aims at summarizing the research so far done in the field of OCR. It provides an overview of different aspects of OCR and discusses corresponding proposals aimed at resolving issues of OCR.
In the running world, there is growing demand for the software systems to recognize characters in computer system when information is scanned through paper documents as we know that we have number of newspapers and books which are in printed format related to different subjects. These days there is a huge demand in " storing the information available in these paper documents in to a computer storage disk and then later reusing this information by searching process ". One simple way to store information in these paper documents in to computer system is to first scan the documents and then store them as IMAGES. But to reuse this information it is very difficult to read the individual contents and searching the contents form these documents line-by-line and word-byword. The reason for this difficulty is the font characteristics of the characters in paper documents are different to font of the characters in computer system. As a result, computer is unable to recognize the characters while reading them. This concept of storing the contents of paper documents in computer storage place and then reading and searching the content is called DOCUMENT PROCESSING. Sometimes in this document processing we need to process the information that is related to languages other than the English in the world. For this document processing we need a software system called CHARCATER RECOGNITION SYSTEM. This process is also called DOCUMENT IMAGE ANALYSIS (DIA).
This paper presents a literature review on English OCR techniques. English OCR system is compulsory to convert numerous published books of English into editable computer text files. Latest research in this area has been able to grown some new methodologies to overcome the complexity of English writing style. Still these algorithms have not been tested for complete characters of English Alphabet. Hence, a system is required which can handle all classes of English text and identify characters among these classes.
Optical Character Recognition (OCR) is a technology that provides a full alphanumeric recognition of printed or handwritten characters. Optical Character Recognition is one of the most interesting and challenging research areas in the field of Image processing. Image Acquisition, Pre-processing, Segmentation, Feature Extraction and Classification are stages of OCR. In this paper, how character patterns are identified in the classification stage by different algorithms is presented. Template Matching Algorithm, statistical Algorithm, Structural Algorithm, Neural Network Algorithm and Support Vector Machine Algorithm are presented in this paper.
International Journal of Machine Learning and Computing, 2012
Optical Character Recognition or OCR is the electronic translation of handwritten, typewritten or printed text into machine translated images. It is widely used to recognize and search text from electronic documents or to publish the text on a website. The paper presents a survey of applications of OCR in different fields and further presents the experimentation for three important applications such as Captcha, Institutional Repository and Optical Music Character Recognition. We make use of an enhanced image segmentation algorithm based on histogram equalization using genetic algorithms for optical character recognition. The paper will act as a good literature survey for researchers starting to work in the field of optical character recognition.
International Journal on Recent and Innovation Trends in Computing and Communication
The process of transcribing a language represented in its spatial form of graphical characters into its symbolic representation is called handwriting recognition. Each script has a collection of characters or letters, often known as symbols, that all share the same fundamental shapes. Handwriting analysis aims to correctly identify input characters or images before being analysed by various automated process systems. Recent research in image processing demonstrates the significance of image content retrieval. Optical character recognition (OCR) systems can extract text from photographs and transform that text to ASCII text. OCR is beneficial and essential in many applications, such as information retrieval systems and digital libraries.
This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determine that have been proposed to realize the center of character recognition in an optical character recognition system. Even though, sufficient studies and papers are describes the techniques for converting textual content from a paper document into machine readable form. Optical character recognition is a process where the computer understands automatically the image of handwritten script and transfer into classify character. This material use as a guide and update for readers working in the Character Recognition area. Selection of a relevant feature extraction method is probably the single most important factor in achieving high character recognition with much better accuracy in character recognition systems without any variation.
Optical character recognition (OCR) is becoming a powerful tool in the field of Character Recognition, now a days. In the existing globalized environment, OCR can play a vital role in different application fields. Basically, OCR technique converts images into editable format. This technique converts images in the form of documents such as we can edit, modify and store data more safely for longtime. This paper presents basic of OCR technique with its components such as pre-processing, Feature Extraction, Classification, post-processing etc. There are various techniques have been implemented for the recognition of character. This Review also discusses different ideas implemented earlier for recognition of a character. This paper may act as a supportive material for those who wish to know about OCR.
International journal of computer applications, 2017
At present scenario, there is growing demand for the software system to recognize characters in a computer system when information is scanned through paper documents. This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determined that have been proposed to realize the center of character recognition in an optical character recognition system. OCR (Optical Character Recognition) translates images of typewritten or handwritten characters into the electronically editable format and it preserves font properties. Different techniques for preprocessing and segmentation have been surveyed and discussed in this paper.
This paper presents a literature review on English OCR techniques. English OCR system is compulsory to convert numerous published books of English into editable computer text files. Latest research in this area has been able to grown some new methodologies to overcome the complexity of English writing style. Still these algorithms have not been tested for complete characters of English Alphabet. Hence, a system is required which can handle all classes of English text and identify characters among these classes.
2000
The survey of today's state of tools for optical text recognition is given in this scientific paper. Tools for processing handwritten symbols still did not enter in wide usage except in some specific cases such as hand-held computer. In the context of this scientific paper, given solutions were used in program "Handwritten Symbol Recognition". Today, on the other hand, tools for printed text recognition are already in wide usage. In the context of this scientific paper, tests of speed and accuracy of the recognition had been carried out for few today's popular commercial tools.
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE), 2018
Optical Character Recognition (OCR) is the process which enables a system to without human intervention identifies the scripts or alphabets written into the users’ verbal communication. Optical Character identification has grown to be individual of the mainly flourishing applications of knowledge in the field of pattern detection and artificial intelligence. In our survey we study on the various OCR techniques. In this paper we resolve and examine the hypothetical and numerical models of Optical Character Identification. The Optical character identification or classification (OCR) and Magnetic Character Recognition (MCR) techniques are generally utilized for the recognition of patterns or alphabets. In general the alphabets are in the variety of pixel pictures and it could be either handwritten or stamped, of any series, shape or direction etc. Alternatively in MCR the alphabets are stamped with magnetic ink and the studying machine categorize the alphabet on the basis of the exclusive magnetic field that is shaped by every alphabet. Both MCR and OCR discover utilization in banking and different trade appliances. Earlier exploration going on Optical Character detection or recognition has shown that the In Handwritten text there is no limitation lying on the script technique. Hand written correspondence is complicated to be familiar through due to diverse human handwriting style, disparity in angle, size and shape of calligraphy. An assortment of approaches of Optical Character Identification is discussed here all along through their achievement.
This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determine that have been proposed to realize the center of character recognition in an optical character recognition system. Even though, sufficient studies and papers are describes the techniques for converting textual content from a paper document into machine readable form. Optical character recognition is a process where the computer understands automatically the image of handwritten script and transfer into classify character. This material use as a guide and update for readers working in the Character Recognition area. Selection of a relevant feature extraction method is probably the single most important factor in achieving high character recognition with much better accuracy in character recognition systems without any variation. Character recognition techniques associate a symbolic identity with the image of character. In a typical OCR systems input characters are digitized by an optical scanner. Each character is then located and segmented, and the resulting character image is fed into a pre-processor for noise reduction and normalization. Certain characteristics are the extracted from the character for classification. The feature extraction is critical and many different techniques exist, each having its strengths and weaknesses. After classification the identified characters are grouped to reconstruct the original symbol strings, and context may then be applied to detect and correct errors.
22nd International Conference on Computer and Information Technology (ICCIT) (Publisher: IEEE), 2019
Optical Character Recognition (OCR) is a major computer vision task by which characters of image are detected and recognized by comparing to training set images. Process of detecting character is one of the perplexing tasks in computer vision. This is because of input image often not correctly aligned or because of noise. This paper presents a complete Optical Character Recognition (OCR) system which is worked for English character mostly for Calibri font. This system first corrects skew of image if input image is not correctly aligned followed by noise reduction from input image. This process is passed through line and character segmentation that are passed into the recognition module and recognize characters. By experimenting with a set of 50 images, average achievement is 92%, 98% is for Calibri font. Moreover, the developed technique is computationally efficient and requires less time than other Optical character recognition system.
International Journal of Advanced Research in Computer Science and Software Engineering
The Character Recognition of both keyboard typed and handwritten characters has still a long way to go in terms of research. Although significant success has been achieved in type written characters but in handwritten it is still to touch an appreciable level. Most of the methods that have been proposed in this regard have huge computational complexity. The proposed review provides an in depth review of the OCR methods which include segmentation, classification and recognition of characters independent in size and texture. The proposed review also provides the literature survey in a summarized manner providing a comparative analysis of various OCR techniques.
The Optical Character Recognition (OCR) is one of the automatic identification techniques that fulfill the automation needs in various applications. A machine can read the information present in natural scenes or other materials in any form with OCR. The typed and printed character recognition is uncomplicated due to its well-defined size and shape. The handwriting of individuals differs in the above aspects. So, the handwritten OCR system faces complexity to learn this difference to recognize a character. In this paper, we discussed the various stages in text recognition, handwritten OCR systems classification according to the text type, study on Chinese and Arabic text recognition as well as application oriented recent research in OCR.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.