Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, Journal of Applied Physics
https://doi.org/10.1063/1.5133091…
7 pages
1 file
The formation of a superlattice in graphene can serve as a way to modify its electronic bandstructure and thus to engineer its electronic transport properties. Recent experiments have discovered a Kekulé bond ordering in graphene deposited on top of a Copper substrate, leading to the breaking of the valley degeneracy while preserving the highly desirable feature of linearity and gapless character of its band dispersion. In this paper we study the effects of a Kekulé distortion in zigzag graphene nanoribbons in both, the subband spectrum and on its electronic transport properties. We extend our study to investigate also the electronic conductance in graphene nanoribbons composed of sequentially ordered ν = ±1 Kek-Y superlattice. We find interesting resonances in the conductance response emerging in the otherwise energy gap regions, which scales with the number of Kek-Y interfaces minus one. Such features resembles the physics of resonant tunneling behavior observed in semiconductors heterostructures. Our findings provide a possible way to measure the strenght of Kekulé parameter in graphene nanoribbons.
Journal of Physics: Conference Series, 2009
We will present brief overview on the electronic and transport properties of graphene nanoribbons focusing on the effect of edge shapes and impurity scattering. The low-energy electronic states of graphene have two non-equivalent massless Dirac spectrum. The relative distance between these two Dirac points in the momentum space and edge states due to the existence of the zigzag type graphene edges are decisive to the electronic and transport properties of graphene nanoribbons. In graphene nanoribbons with zigzag edges, two valleys related to each Dirac spectrum are well separated in momentum space. The propagating modes in each valley contain a single chiral mode originating from a partially flat band at band center. This feature gives rise to a perfectly conducting channel in the disordered system, if the impurity scattering does not connect the two valleys, i.e. for long-range impurity potentials. On the other hand, the low-energy spectrum of graphene nanoribbons with armchair edges is described as the superposition of two non-equivalent Dirac points of graphene. In spite of the lack of well-separated two valley structures, the single-channel transport subjected to long-ranged impurities is nearly perfectly conducting, where the backward scattering matrix elements in the lowest order vanish as a manifestation of internal phase structures of the wavefunction. Symmetry considerations lead to the classification of disordered zigzag ribbons into the unitary class for long-range impurities, and the orthogonal class for short-range impurities. However, no such crossover occurs in armchair nanoribbons.
Advances in Condensed Matter Physics, 2019
Density-functional theory (DFT) in combination with the nonequilibrium Green’s function formalism is used to study the effect of substitutional doping on the electronic transport properties of V-shaped edge distorted zigzag graphene nanoribbons (DZGNRs), in which DZGNRs with the various widths of four-, six-, and eight-zigzag chains are passivated by H atoms. In this work, Si atoms are used to substitute carbon atoms located at the center of the samples. Our calculated results have determined that Si can change the material type by the number of dopants. We found that the transmission spectrum strongly depends on the various widths. The width of eight-zigzag chains exhibits the largest transmission among four- and six-zigzag chains, and the single Si substitution presents larger transmission than the double case. The obtained results are explained in terms of electron localization in the system due to the presence of distortion at edge and impurities. The relationships between the t...
Carbon, 2008
Numerical calculations have been performed to elucidate unconventional electronic transport properties in disordered nanographene ribbons with zigzag edges (zigzag ribbons). The energy band structure of zigzag ribbons has two valleys that are well separated in momentum space, related to the two Dirac points of the graphene spectrum. The partial flat bands due to edge states make the imbalance between left- and right-going modes in each valley, i.e. appearance of a single chiral mode. This feature gives rise to a perfectly conducting channel in the disordered system, i.e. the average of conductance 〈g〉〈g〉 converges exponentially to 1 conductance quantum per spin with increasing system length, provided impurity scattering does not connect the two valleys, as is the case for long-range impurity potentials. Ribbons with short-range impurity potentials, however, through inter-valley scattering, display ordinary localization behavior. Symmetry considerations lead to the classification of disordered zigzag ribbons into the unitary class for long-range impurities, and the orthogonal class for short-range impurities. The electronic states of graphene nanoribbons with general edge structures are also discussed, and it is demonstrated that chiral channels due to the edge states are realized even in more general edge structures except for armchair edges.
Physica B: Condensed Matter, 2009
We study the transport properties of heterostructures of armchair graphene nanoribbons (AGNR) forming a double symmetrical barrier configuration. The systems are described by a single-band tightbinding Hamiltonian and Green's functions formalism, based on real-space renormalization techniques. We present results for the quantum conductance and the current for distinct configurations, focusing our analysis on the dependence of the transport with geometrical effects such as separation, width and transverse dimension of the barriers. Our results show the apparition of a series of resonant peaks in the conductance, showing a clear evidence of the presence of resonant states in the conductor. Changes in the barrier dimensions allow the modulation of the resonances in the conductance, making possible to obtain a complete suppression of electron transmission for determined values of the Fermi energy. The current-voltage curves show the presence of a negative differential resistance effect with a threshold voltage that can be controlled by varying the separation between the barriers and by modulating its confinement potential.
Physical Review B, 2016
Recent experimental findings and theoretical predictions suggest that nitrogen-doped CVD-grown graphene may give rise to electronic band gaps due to impurity distributions which favour segregation on a single sublattice. Here we demonstrate theoretically that such distributions lead to more complex behaviour in the presence of edges, where geometry determines whether electrons in the sample view the impurities as a gap-opening average potential or as scatterers. Zigzag edges give rise to the latter case, and remove the electronic bandgaps predicted in extended graphene samples. We predict that such behaviour will give rise to leakage near grain boundaries with a similar geometry or in zigzag-edged etched devices. Furthermore, we examine the formation of one-dimensional metallic channels at interfaces between different sublattice domains, which should be observable experimentally and offer intriguing waveguiding possibilities.
The Journal of Chemical Physics, 2013
Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the nonequilibrium Green's function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance.
Microelectronics Journal, 2008
We study the electronic and transport properties of heterostructures formed by armchair graphene nanoribbons with intersections of finite length. We describe the system by a tight-binding model and calculate the density of states and the conductance within the Green's function formalism based on real-space renormalization techniques. We show the apparition of interface states and bound states in the continuum which present a strong dependence of the heterostructure geometry. We investigate the effects on the conductance of an external perturbation applied on the edges atoms of the intersection region.
Physical Review B, 2008
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at temperatures as high as 80 K and channel lengths as long as 1.7 µm. The observed quantization is in agreement with that predicted by theoretical calculations.
Phys Rev B, 2008
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at temperatures as high as 80 K and channel lengths as long as 1.7 $\mu$m. The observed quantization is in agreement with that predicted by theoretical calculations.
Physical Review B, 2011
Ab initio methods are used to study the spin-resolved transport properties of graphene nanoribbons (GNRs) that have both chemical and structural edge disorder. Oxygen edge adsorbates on ideal and protruded ribbons are chosen as representative examples, with the protrusions forming the smallest possible structural disorder consistent with the edge geometry. The impact of the oxygen adsorbate dominates the transport properties of armchair nanoribbons. For zigzag nanoribbons, the transmission properties are markedly affected by the protrusion alone, leading to spin-polarized transport and a smaller perturbation from the oxygen adsorbate. Armchair nanoribbons also exhibit, as a function of their width and the threefold family structure, a repeating pattern related to the existence of the spin polarization and to the variation in the width of the band gap.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Frontiers in Physics
Nanomaterials
The Journal of Physical Chemistry C, 2012
International Journal of Modern Physics B
Physical Review Letters, 2009
Nanoscale research letters, 2011
Physical Review B, 2009
Physical Review B, 2015
Nanoscale Research Letters, 2011
2010 IEEE Nanotechnology Materials and Devices Conference, 2010
Physical Review B Condensed Matter and Materials Physics, 2009
arXiv (Cornell University), 2019
Physica E: Low-dimensional Systems and Nanostructures, 2018
European Physical Journal B, 2009