Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
10 pages
1 file
Averaged 7-day composite effluent wastewater samples from twelve wastewater treatment plants (WWTPs) in nine countries () in the Danube River Basin were collected. WWTPs' selection was based on countries' dominant technology and a number of served population with the aim to get a representative holistic view of the pollution status. Samples were analyzed for 2248 chemicals of emerging concern (CECs) by wide-scope target screening employing LC-ESI-QTOF-MS. 280 compounds were detected at least in one sample and quantified. Spatial differences in the concentrations and distribution of the compounds classes were discussed. Additionally, samples were analyzed for the possible agonistic/antagonistic potencies using a panel of in vitro transactivation reporter gene CALUX® bioassays including ERα (estrogenics), anti-AR (anti-androgens), GR (glucocorticoids), anti-PR (anti-progestins), PPARα and PPARγ (peroxisome proliferators) and PAH assays. The potency of the wastewater samples to cause oxidative stress and induce xenobiotic metabolism was determined using the Nrf2 and PXR CALUX® bioassays, respectively. The signals from each of the bioassays were compared with the recently developed effect-based trigger values (EBTs) and thus allowed for allocating the wastewater effluents into four categories based on their measured toxicity, proposing a putative action plan for wastewater operators. Moreover, samples were analyzed for antibiotics and 13 antibiotic-resistant genes (ARGs) and one mobile genetic element (intl1) with the aim to assess the potential for antibiotic resistance. All data collected from these various types of analysis were stored in an on-line database and can be viewed via interactive map at https://norman-data.eu/EWW_DANUBE.
Environment International
Danube River Basin were collected. WWTPs' selection was based on countries' dominant technology and a number of served population with the aim to get a representative holistic view of the pollution status. Samples were analyzed for 2248 chemicals of emerging concern (CECs) by wide-scope target screening employing LC-ESI-QTOF-MS. 280 compounds were detected at least in one sample and quantified. Spatial differences in the concentrations and distribution of the compounds classes were discussed. Additionally, samples were analyzed for the possible agonistic/antagonistic potencies using a panel of in vitro transactivation reporter gene CALUX® bioassays including ERα (estrogenics), anti-AR (anti-androgens), GR (glucocorticoids), anti-PR (anti-progestins), PPARα and PPARγ (peroxisome proliferators) and PAH assays. The potency of the wastewater samples to cause oxidative stress and induce xenobiotic metabolism was determined using the Nrf2 and PXR CALUX® bioassays, respectively. The signals from each of the bioassays were compared with the recently developed effect-based trigger values (EBTs) and thus allowed for allocating the wastewater effluents into four categories based on their measured toxicity, proposing a putative action plan for wastewater operators. Moreover, samples were analyzed for antibiotics and 13 antibiotic-resistant genes (ARGs) and one mobile genetic element (intl1) with the aim to assess the potential for antibiotic resistance. All data collected from these various types of analysis were stored in an on-line database and can be viewed via interactive map at https://norman-data.eu/EWW_DANUBE.
Water
Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial ecosystems. Wastewater is one of the sources of antibiotic resistance. The aim of this research was the evaluation of wastewater impact on the spread of antibiotic resistance in the water environment. In this study, qPCR was used to detect antibiotic resistance genes (ARGs)—blaCTX-M-15, blaCTX-M-32, ampC, blaTEM, sul1, tetM and mcr-1 and an integron detection primer (intl1). Detection of antibiotic resistant Escherichia coli was used as a complement to the observed qPCR results. Our results show that the process of wastewater treatment significantly reduces the abundances of ARGs and ARB. Nevertheless, treated wastewater affects the ARGs and ARB number in the receiving river.
Water Research
There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified bla OXA-58 as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water.
Ecohydrology & Hydrobiology, 2019
Export of pollution to rivers and coastal zones driven by human-related activities is a major problem in river catchments and coastal marine ecosystems (Kiedrzyń ska et al., 2014a,b, 2015). To achieve the good ecological status of freshwater ecosystems (Water Framework Directive 2000/60/EC) reduce outflow of pollution from anthropogenic sources located in particular river catchments is necessary (Kiedrzyń ska et al., 2014a,b). Antibiotics are widely used in the treatment of bacterial infections in both human and veterinary medicine. Most antibiotics are excreted with feces into the environment in Ecohydrology & Hydrobiology xxx (2019) xxx-xxx
Molecules
Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants’ elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater tre...
Journal of Environmental Chemical Engineering
Antibiotics are being used intensively for humans and livestock worldwide and have led to the presence of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. Wastewater treatment plants (WWTPs) have been identified as a point source for ARB&Gs, and water catchments consequently are potential receptors of ARB&Gs. The objective of this study was to investigate the occurrence of antibiotics (macrolides, sulfonamides, tetracyclines), ARGs (ermB, sul1, sul2, tetW), and class 1 integron (targeting the integrase gene), in a Dutch river that receives wastewater treatment plant effluent. Sediment and water samples were collected during one year along the river. The WWTP significantly increased the amounts of antibiotics and ARGs in the river as compared to the upstream samples, of which the antibiotics decreased once they entered the river. ARGs were persistent in the water and sediment from the WWTP effluent discharge point until 20 km downstream. This study provides insight in the prevalence of antibiotics and ARGs in a wastewater effluent-receiving river system in the Netherlands. Even though human antibiotic usage is low in the Netherlands, antibiotics, residues of antibiotics, and ARGs are detected in the river surface water-sediment system, which shows that a river has the potential to act as a reservoir of ARGs. Recently, dissemination of ARGs in the environments has been highlighted as an emerging problem [15,16], especially if contaminated water resources are reused for cattle, irrigation, or drinking water
Science Advances
Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and contr...
Environmental Science and Pollution Research, 2017
Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrugresistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5′-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.
Ecohydrology & Hydrobiology, 2019
The aim of study was to analyze the occurrence of antibiotic-resistance genes (ARGs) in the Pilica River. Seasonal variations in the occurrence of ARGs in river water were also determined. Water samples were collected in 7 sites situated along a 186-km section of the Pilica River from Przedbórz to estuary. River water was sampled four times between November 2017 and July 2018. Environmental DNA was isolated from water samples, and selected genes encoding resistance to tetracyclines (tet (A), tet (B), tet (C), tet (D), tet (E), betalactams (bla OXA , bla SHV , bla TEM , bla CTX-M), macrolide, lincosamide and streptogramin (MLS) antibiotics (erm F and lin A), sulfonamides (sul 1), fluoroquinolones (aac(6)-Ib-cr) as well as the integrase 1 (int l1) gene and the 16S rRNA gene were amplified by standard PCR. ARGs were most prevalent and diverse in winter samples which harbored the int l1 gene and genes encoding resistance to beta-lactams, MLS antibiotics, sulfonamides and tetracyclines. The bla OXA and bla CTX-M genes were detected only in two autumn samples. The bla TEM gene was prevalent in all samples regardless of the time and place of sampling. Variations in the prevalence of ARGs were not observed along the analyzed section of the Pilica River, which indicates that pollutant loads did not increase along the river continuum. It should be noted that selected genes (bla TEM , tet (A) , tet (E) , erm F , lin A) were present in all or nearly all water samples regardless of sampling date or sampling site, which indicates that these ARGs are ubiquitous in the environment.
Molecules
In this study, a screening of 26 selected antimicrobials using liquid chromatography coupled to a tandem mass spectrometry method in two Polish wastewater treatment plants and their receiving surface waters was provided. The highest average concentrations of metronidazole (7400 ng/L), ciprofloxacin (4300 ng/L), vancomycin (3200 ng/L), and sulfamethoxazole (3000 ng/L) were observed in influent of WWTP2. Ciprofloxacin and sulfamethoxazole were the most dominant antimicrobials in influent and effluent of both WWTPs. In the sludge samples the highest mean concentrations were found for ciprofloxacin (up to 28 μg/g) and norfloxacin (up to 5.3 μg/g). The removal efficiency of tested antimicrobials was found to be more than 50% for both WWTPs. However, the presence of antimicrobials influenced their concentrations in the receiving waters. The highest antimicrobial resistance risk was estimated in influent of WWTPs for azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethop...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Science of The Total Environment, 2014
Tribhuvan University Journal of Microbiology
Prävention und Gesundheitsförderung, 2014
Journal of Environmental Chemical Engineering, 2018
Research Journal of Microbiology, 2023
Environmental pollution (Barking, Essex : 1987), 2017
Environment International, 2020
Environment international, 2018