Academia.eduAcademia.edu

From GEM to Electromagnetism

Gen.Rel.Grav. 46 (2014) 1742

https://doi.org/10.1007/s10714-014-1742-y

In the first part of the present work, we focus on the theory of gravitoelectromagnetism (GEM), and we derive the full set of equations and constraints that the GEM scalar and vector potentials ought to satisfy. We discuss important aspects of the theory, such as the presence of additional constraints resulting from the field equations and gauge condition, the requirement of the time-independence of the vector potential and the emergence of additional terms in the expression of the Lorentz force. We also propose an alternative ansatz for the metric perturbations that is found to be compatible only with a vacuum configuration but evades several of the aforementioned obstacles. In the second part of this work, we pose the question of whether a tensorial theory using the formalism of General Relativity could re-produce the theory of Electromagnetism. We demonstrate that the full set of Maxwell's equations can be exactly re-produced for a large class of models, but the framework has several weak points common with those found in GEM.