Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
5 pages
1 file
Our work proposes a novel deep learning framework for estimating crowd density from static images of highly dense crowds. We use a combination of deep and shallow, fully convolutional networks to predict the density map for a given crowd image. Such a combination is used for effectively capturing both the high-level semantic information (face/body detectors) and the low-level features (blob detectors), that are necessary for crowd counting under large scale variations. As most crowd datasets have limited training samples (<100 images) and deep learning based approaches require large amounts of training data, we perform multiscale data augmentation. Augmenting the training samples in such a manner helps in guiding the CNN to learn scale invariant representations. Our method is tested on the challenging UCF CC 50 dataset, and shown to outperform the state of the art methods.
Big Data and Cognitive Computing, 2021
Automatically estimating the number of people in unconstrained scenes is a crucial yet challenging task in different real-world applications, including video surveillance, public safety, urban planning, and traffic monitoring. In addition, methods developed to estimate the number of people can be adapted and applied to related tasks in various fields, such as plant counting, vehicle counting, and cell microscopy. Many challenges and problems face crowd counting, including cluttered scenes, extreme occlusions, scale variation, and changes in camera perspective. Therefore, in the past few years, tremendous research efforts have been devoted to crowd counting, and numerous excellent techniques have been proposed. The significant progress in crowd counting methods in recent years is mostly attributed to advances in deep convolution neural networks (CNNs) as well as to public crowd counting datasets. In this work, we review the papers that have been published in the last decade and provi...
Journal of Intelligent Systems, 2020
The purpose of crowd counting is to estimate the number of pedestrians in crowd images. Crowd counting or density estimation is an extremely challenging task in computer vision, due to large scale variations and dense scene. Current methods solve these issues by compounding multi-scale Convolutional Neural Network with different receptive fields. In this paper, a novel end-to-end architecture based on Multi-Scale Adversarial Convolutional Neural Network (MSA-CNN) is proposed to generate crowd density and estimate the amount of crowd. Firstly, a multi-scale network is used to extract the globally relevant features in the crowd image, and then fractionally-strided convolutional layers are designed for up-sampling the output to recover the loss of crucial details caused by the earlier max pooling layers. An adversarial loss is directly employed to shrink the estimated value into the realistic subspace to reduce the blurring effect of density estimation. Joint training is performed in a...
IEEE Access, 2019
Crowd counting and density estimation is an important and challenging problem in the visual analysis of the crowd. Most of the existing approaches use regression on density maps for the crowd count from a single image. However, these methods cannot localize individual pedestrian and therefore cannot estimate the actual distribution of pedestrians in the environment. On the other hand, detection-based methods detect and localize pedestrians in the scene, but the performance of these methods degrades when applied in high-density situations. To overcome the limitations of pedestrian detectors, we proposed a motion-guided filter (MGF) that exploits spatial and temporal information between consecutive frames of the video to recover missed detections. Our framework is based on the deep convolution neural network (DCNN) for crowd counting in the low-to-medium density videos. We employ various state-of-the-art network architectures, namely, Visual Geometry Group (VGG16), Zeiler and Fergus (ZF), and VGGM in the framework of a region-based DCNN for detecting pedestrians. After pedestrian detection, the proposed motion guided filter is employed. We evaluate the performance of our approach on three publicly available datasets. The experimental results demonstrate the effectiveness of our approach, which significantly improves the performance of the state-of-the-art detectors. INDEX TERMS Deep convolutional neural networks, crowd counting and density estimation, Motion Guided Filter, faster R-CNN.
International Journal of Computational Intelligence Systems
People counting has been investigated extensively as a tool to increase the individual’s safety and to avoid crowd hazards at public places. It is a challenging task especially in high-density environment such as Hajj and Umrah, where millions of people gathered in a constrained environment to perform rituals. This is due to large variations of scales of people across different scenes. To solve scale problem, a simple and effective solution is to use an image pyramid. However, heavy computational cost is required to process multiple levels of the pyramid. To overcome this issue, we propose deep-fusion model that efficiently and effectively leverages the hierarchical features exits in various convolutional layers deep neural network. Specifically, we propose a network that combine multiscale features from shallow to deep layers of the network and map the input image to a density map. The summation of peaks in the density map provides the final crowd count. To assess the effectiveness...
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019
In this work, we propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation. The proposed method uses VGG16 as the backbone network and employs density map generated by the final layer as a coarse prediction to refine and generate finer density maps in a progressive fashion using residual learning. Additionally, the residual learning is guided by an uncertainty-based confidence weighting mechanism that permits the flow of only high-confidence residuals in the refinement path. The proposed Confidence Guided Deep Residual Counting Network (CG-DRCN) is evaluated on recent complex datasets, and it achieves significant improvements in errors. Furthermore, we introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD) that is ∼2.8 × larger than the most recent crowd counting datasets in terms of the number of images. It contains 4,250 images with 1.11 million annotations. In comparison to existing datasets, the proposed dataset is collected under a variety of diverse scenarios and environmental conditions. Specifically, the dataset includes several images with weatherbased degradations and illumination variations in addition to many distractor images, making it a very challenging dataset. Additionally, the dataset consists of rich annotations at both image-level and head-level. Several recent methods are evaluated and compared on this dataset.
ArXiv, 2019
We propose a Multi-Task Learning (MTL) paradigm based deep neural network architecture, called MTCNet (Multi-Task Crowd Network) for crowd density and count estimation. Crowd count estimation is challenging due to the non-uniform scale variations and the arbitrary perspective of an individual image. The proposed model has two related tasks, with Crowd Density Estimation as the main task and Crowd-Count Group Classification as the auxiliary task. The auxiliary task helps in capturing the relevant scale-related information to improve the performance of the main task. The main task model comprises two blocks: VGG-16 front-end for feature extraction and a dilated Convolutional Neural Network for density map generation. The auxiliary task model shares the same front-end as the main task, followed by a CNN classifier. Our proposed network achieves 5.8% and 14.9% lower Mean Absolute Error (MAE) than the state-of-the-art methods on ShanghaiTech dataset without using any data augmentation. O...
IEEE Access, 2019
Counting and localization of people in videos consisting of low density to high density crowds encounter many key challenges including complex backgrounds, scale variations, nonuniform distributions, and occlusions. For this purpose, we propose a scale driven convolutional neural network (SD-CNN) model, which is based on the assumption that heads are the dominant and visible features regardless of the density of crowds. To deal with the problem of different scales of heads in different regions of the videos, we annotate a set of heads in random locations of the videos to develop a scale map representing the mapping of head sizes. We then extract scale aware proposals based on the scale map which are fed to the SD-CNN model acting as a head detector. Our model provides a response matrix rendering accurate head positions via nonmaximal suppression. For experimental evaluations, we consider three standard datasets presenting low density to high density crowd scenes. Our proposed SD-CNN model outperforms the state-of-the-art methods in terms of both frame-level and pixel-level analyses. INDEX TERMS Convolutional neural networks, non-maximal suppression, head detection, crowd counting, motion analysis.
IEEE Access
Nowadays, crowd analysis is one of the most important concepts that needs be relied upon, it contributes to decision making and ensuring the safety and security of the crowd. There are a variety of interesting research problems within the scope of crowd analysis including crowd tracking, crowd behaviour recognition and crowd counting. Crowd counting based on images and videos has been studied in past years. Nonetheless, estimating and detecting the number of human heads remains a challenging task due to occlusions, resolution, and lighting changes. This paper provides an overview and performance comparison of crowd counting techniques using convolutional neural networks (CNN) based on density map estimation. In this paper, we present a comprehensive analysis and benchmarking of crowd counting based on the UCF-QNRF dataset that contains the largest number of crowd count images and head annotations available in the public domain. We also show the density maps generation and their empirical evaluation along with performance comparison. INDEX TERMS Large-scale crowd, crowd counting, computer vision, deep learning, convolutional neural networks, bio-inspired model, density map estimation.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
We propose a novel crowd counting model that maps a given crowd scene to its density. Crowd analysis is compounded by myriad of factors like inter-occlusion between people due to extreme crowding, high similarity of appearance between people and background elements, and large variability of camera viewpoints. Current state-of-the art approaches tackle these factors by using multi-scale CNN architectures, recurrent networks and late fusion of features from multi-column CNN with different receptive fields. We propose switching convolutional neural network that leverages variation of crowd density within an image to improve the accuracy and localization of the predicted crowd count. Patches from a grid within a crowd scene are relayed to independent CNN regressors based on crowd count prediction quality of the CNN established during training. The independent CNN regressors are designed to have different receptive fields and a switch classifier is trained to relay the crowd scene patch to the best CNN regressor. We perform extensive experiments on all major crowd counting datasets and evidence better performance compared to current stateof-the-art methods. We provide interpretable representations of the multichotomy of space of crowd scene patches inferred from the switch. It is observed that the switch relays an image patch to a particular CNN column based on density of crowd.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
IEEExplore, 2019 Innovations in Intelligent Systems and Applications Conference, 2019
2018 24th International Conference on Pattern Recognition (ICPR), 2018
Proceedings of the AAAI Conference on Artificial Intelligence
Computers, Materials & Continua
Computer Science and Information Systems, 2022
arXiv: Computer Vision and Pattern Recognition, 2021
Proceedings of the 24th ACM international conference on Multimedia, 2016
Journal of Real-Time Image Processing
Sensors, 2019
2019 International Joint Conference on Neural Networks (IJCNN)
2019 IEEE International Conference on Image Processing (ICIP), 2019
University of Bahrain, IJCDS Journal, 2025, VOL. 17, NO. 1, 1–15, 2025
International journal of electrical and computer engineering systems, 2020
Fourth International Workshop on Pattern Recognition,, 2019
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020