Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009, Proceedings of the 23rd international conference on Conference on Supercomputing - ICS '09
…
10 pages
1 file
A recent development in radio astronomy is to replace traditional dishes with many small antennas. The signals are combined to form one large, virtual telescope. The enormous data streams are crosscorrelated to filter out noise. This is especially challenging, since the computational demands grow quadratically with the number of data streams. Moreover, the correlator is not only computationally intensive, but also very I/O intensive. The LOFAR telescope, for instance, will produce over 100 terabytes per day. The future SKA telescope will even require in the order of exaflops, and petabits/s of I/O. A recent trend is to correlate in software instead of dedicated hardware. This is done to increase flexibility and to reduce development efforts. Examples include e-VLBI and LOFAR.
International Journal of Parallel Programming, 2010
A recent development in radio astronomy is to replace traditional dishes with many small antennas. The signals are combined to form one large, virtual telescope. The enormous data streams are cross-correlated to filter out noise. This is especially challenging, since the computational demands grow quadratically with the number of data streams. Moreover, the correlator is not only computationally intensive, but also very I/O intensive. The LOFAR telescope, for instance, will produce over 100 terabytes per day. The future SKA telescope will even require in the order of exaflops, and petabits/s of I/O. A recent trend is to correlate in software instead of dedicated hardware, to increase flexibility and to reduce development efforts.
IEEE Signal Processing Magazine, 2000
R adio telescopes typically consist of multiple receivers whose signals are cross-correlated to filter out noise. A recent trend is to correlate in software instead of custom-built hardware, taking advantage of the flexibility that software solutions offer. Examples include e-VLBI and the low frequency array (LOFAR). However, the data rates are usually high and the processing requirements challenging. Many-core processors are promising devices to provide the required processing power. In this article, we explain how to implement and optimize signal-processing applications on multicore CPUs and many-core architectures, such as the Intel Core i7, NVIDIA and ATI graphics processor units (GPUs), and the Cell/BE. We use correlation as a running example. The correlator is a streaming, possibly real-time application, and is much more input/ output (I/O) intensive than applications that are typically implemented on many-core hardware today. We compare with the LOFAR production correlator on an IBM Blue Gene/P (BG/P) supercomputer. We discuss several important architectural problems which cause architectures to perform suboptimally, and also deal with programmability.
Proceedings of the ISC
Astronomy and Computing
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a newgeneration radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system shows the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
2011 XXXth URSI General Assembly and Scientific Symposium, 2011
This paper gives an overview of the LOFAR correlator. Unlike traditional telescopes, the correlator is implemented in software, yielding a very flexible and reconfigurable instrument. The term "correlator" understates its capabilities: it filters, corrects, coherently or incoherently beam forms, dedisperses, and transforms the data as well. It supports several observation modes, even simultaneously. The high data rates and processing requirements compel the use of a supercomputer; we use a Blue Gene/P. The software is highly optimized and achieves extremely good computational performance and bandwidths, increasing the performance of the entire LOFAR telescope.
2010
Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '10, 2010
LOFAR is the first of a new generation of radio telescopes. Rather than using expensive dishes, it forms a distributed sensor network that combines the signals from many thousands of simple antennas. Its revolutionary design allows observations in a frequency range that has hardly been studied before.
Publications of the Astronomical Society of the Pacific, 2008
A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing highperformance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BM N 2 , where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second.
Experimental Astronomy, 2004
Moore's law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore's law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC's supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.
2012 IEEE 26th International Parallel and Distributed Processing Symposium, 2012
Traditional radio telescopes use large steel dishes to observe radio sources. The largest radio telescope in the world, LOFAR, uses tens of thousands of fixed, omnidirectional antennas instead, a novel design that promises groundbreaking research in astronomy. Where traditional telescopes use custom-built hardware, LOFAR uses software to do signal processing in real time. This leads to an instrument that is inherently more flexible. However, the enormous data rates and processing requirements (tens to hundreds of teraflops) make this extremely challenging. The next-generation telescope, the SKA, will require exaflops. Unlike traditional instruments, LOFAR and SKA can observe in hundreds of directions simultaneously, using beam forming. This is useful, for example, to search the sky for pulsars (i.e. rapidly rotating highly magnetized neutron stars). Beam forming is an important technique in signal processing: it is also used in WIFI and 4G cellular networks, radar systems, and health-care microwave imaging instruments. We propose the use of many-core architectures, such as 48core CPU systems and Graphics Processing Units (GPUs), to accelerate beam forming. We use two different frameworks for GPUs, CUDA and OpenCL, and present results for hardware from different vendors (i.e. AMD and NVIDIA). Additionally, we implement the LOFAR beam former on multi-core CPUs, using OpenMP with SSE vector instructions. We use autotuning to support different architectures and implementation frameworks, achieving both platform and performance portability. Finally, we compare our results with the production implementation, written in assembly and running on an IBM Blue Gene/P supercomputer. We compare both computational and power efficiency, since power usage is one of the fundamental challenges modern radio telescopes face. Compared to the production implementation, our auto-tuned beam former is 45-50 times faster on GPUs, and 2-8 times more power efficient. Our experimental results lead to the conclusion that GPUs are an attractive solution to accelerate beam forming.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 2018
Arxiv preprint astro-ph/0702141, 2007
Astronomy and Computing, 2020
Publications of the Astronomical Society of Australia, 2015
Publications of the Astronomical Society of Australia, 2011
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 2012
Journal of Astronomical Telescopes, Instruments, and Systems, 2021
Lecture Notes in Computer Science, 2014
Publications of the Astronomical Society of the Pacific, 2016
Revista Brasileira de Computação Aplicada, 2014
Lecture Notes in Computer Science, 2004
… and Systems XII, 2003
Gps Solutions, 2016
2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006