Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
We propose session-ocaml, a novel library for session-typed concurrent/distributed programming in OCaml. Our technique solely relies on parametric polymorphism, which can encode core session type structures with strong static guarantees. Our key ideas are: () polarised session types, which give an alternative formulation of duality enabling OCaml to automatically infer an appropriate session type in a session with a reasonable notational overhead; and () a parameterised monad with a data structure called 'slots' manipulated with lenses, which can statically enforce session linearity and delegations. We show applications of session-ocaml including a travel agency usecase and an SMTP protocol.
Lecture Notes in Computer Science, 2004
A session type is an abstraction of a set of sequences of heterogeneous values sent and received over a communication channel. Session types can be used for specifying stream-based Internet protocols. Typically, session types are attached to communication-based program calculi, which renders them theoretical tools which are not readily usable in practice. To transfer session types into practice, we propose an embedding of a core calculus with session types into the functional programming language Haskell. The embedding preserves typing. A case study (a client for SMTP, the Simple Mail Transfer Protocol) demonstrates the feasibility of our approach.
Lecture Notes in Computer Science, 2006
A session takes place between two parties; after establishing a connection, each party interleaves local computations and communications (sending or receiving) with the other. Session types characterise such sessions in terms of the types of values communicated and the shape of protocols, and have been developed for the π-calculus, CORBA interfaces, and functional languages. We study the incorporation of session types into object-oriented languages through MOOSE, a multi-threaded language with session types, thread spawning, iterative and higher-order sessions. Our design aims to consistently integrate the objectoriented programming style and sessions, and to be able to treat various case studies from the literature. We describe the design of MOOSE, its syntax, operational semantics and type system, and develop a type inference system. After proving subject reduction, we establish the progress property: once a communication has been established, well-typed programs will never starve at communication points.
ACM SIGPLAN Notices, 2008
We describe an implementation of session types in Haskell. Session types statically enforce that client-server communication proceeds according to protocols. They have been added to several concurrent calculi, but few implementations of session types are available.
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2010
Session types allow communication protocols to be specified typetheoretically so that protocol implementations can be verified by static type-checking. We extend previous work on session types for distributed object-oriented languages in three ways. (1) We attach a session type to a class definition, to specify the possible sequences of method calls. (2) We allow a session type (protocol) implementation to be modularized, i.e. partitioned into separatelycallable methods. (3) We treat session-typed communication channels as objects, integrating their session types with the session types of classes. The result is an elegant unification of communication channels and their session types, distributed object-oriented programming, and a form of typestates supporting non-uniform objects, i.e. objects that dynamically change the set of available methods. We define syntax, operational semantics, a sound type system, and a correct and complete type checking algorithm for a small distributed class-based object-oriented language. Static typing guarantees that both sequences of messages on channels, and sequences of method calls on objects, conform to type-theoretic specifications, thus ensuring type-safety. The language includes expected features of session types, such as delegation, and expected features of object-oriented programming, such as encapsulation of local state. We also describe a prototype implementation as an extension of Java.
Electronic Proceedings in Theoretical Computer Science
Multiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures the absence of communication errors and deadlocks for well-typed communicating processes. The state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure correct usage of communication channels and (2) external domain-specific languages for specifying and verifying multiparty protocols. To overcome these limitations, we propose a library for programming with global combinators-a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. We formalise global combinators and prove a sound realisability of global combinators-a well-typed global combinator derives a set of local types, by which typed endpoint programs can ensure type and communication safety. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. We compare our implementation to untyped and continuation-passing style implementations, and demonstrate its expressiveness by implementing a plethora of protocols. We show our library can interoperate with existing libraries and services, implementing DNS (Domain Name Service) protocol and the OAuth (Open Authentication) protocol. 2012 ACM Subject Classification Software and its engineering → Concurrent programming structures; Theory of computation → Type structures; Software and its engineering → Functional languages; Software and its engineering → Polymorphism
Electronic Proceedings in Theoretical Computer Science, 2014
Behavioural type systems ensure more than the usual safety guarantees of static analysis. They are based on the idea of "types-as-processes", providing dedicated type algebras for particular properties, ranging from protocol compatibility to race-freedom, lock-freedom, or even responsiveness. Two successful, although rather different, approaches, are session types and process types. The former allows to specify and verify (distributed) communication protocols using specific type (proof) systems; the latter allows to infer from a system specification a process abstraction on which it is simpler to verify properties, using a generic type (proof) system. What is the relationship between these approaches? Can the generic one subsume the specific one? At what price? And can the former be used as a compiler for the latter? The work presented herein is a step towards answers to such questions. Concretely, we define a stepwise encoding of a π-calculus with sessions and session types (the system of Gay and Hole [4]) into a π-calculus with process types (the Generic Type System of Igarashi and Kobayashi [6]). We encode session type environments, polarities (which distinguish session channels end-points), and labelled sums. We show forward and reverse operational correspondences for the encodings, as well as typing correspondences. To faithfully encode session subtyping in process types subtyping, one needs to add to the target language record constructors and new subtyping rules. In conclusion, the programming convenience of session types as protocol abstractions can be combined with the simplicity and power of the π-calculus, taking advantage in particular of the framework provided by the Generic Type System. Session types are an increasingly popular technique for specifying and verifying protocols in concurrent and distributed systems. In a setting of point-to-point private-channel-based communication, the session type of a channel describes the sequence and type of messages that can be sent on it. For example
Programming Languages and Systems, 2018
In sequential languages, dynamic contracts are usually expressed as boolean functions without externally observable effects, written within the language. We propose an analogous notion of concurrent contracts for languages with session-typed message-passing concurrency. Concurrent contracts are partial identity processes that monitor the bidirectional communication along channels and raise an alarm if a contract is violated. Concurrent contracts are session-typed in the usual way and must also satisfy a transparency requirement, which guarantees that terminating compliant programs with and without the contracts are observationally equivalent. We illustrate concurrent contracts with several examples. We also show how to generate contracts from a refinement session-type system and show that the resulting monitors are redundant for programs that are well-typed.
2011
We present an inference system for a version of the Pi-calculus in Haskell for the session type proposed by Honda et al. The session type is very useful in checking if the communications are well-behaved. The full session type implementation in Haskell was first presented by Pucella and Tov, which is 'semi-automatic' in that the manual operations for the type representation was necessary. We give an automatic type inference for the session type by using a more abstract representation for the session type based on the 'de Bruijn levels'. We show an example of the session type inference for a simple SMTP client.
Proceedings of the 8th ACM SIGPLAN Symposium on Haskell - Haskell 2015, 2015
Remote Procedure Calls are expensive. This paper demonstrates how to reduce the cost of calling remote procedures from Haskell by using the remote monad design pattern, which amortizes the cost of remote calls. This gives the Haskell community access to remote capabilities that are not directly supported, at a surprisingly inexpensive cost. We explore the remote monad design pattern through six models of remote execution patterns, using a simulated Internet of Things toaster as a running example. We consider the expressiveness and optimizations enabled by each remote execution model, and assess the feasibility of our approach. We then present a full-scale case study: a Haskell library that provides a Foreign Function Interface to the JavaScript Canvas API. Finally, we discuss existing instances of the remote monad design pattern found in Haskell libraries.
Electronic Proceedings in Theoretical Computer Science, 2013
In recent work, we have developed a session types discipline for a calculus that features the usual constructs for session establishment and communication, but also two novel constructs that enable communicating processes to be stopped, duplicated, or discarded at runtime. The aim is to understand whether known techniques for the static analysis of structured communications scale up to the challenging context of context-aware, adaptable distributed systems, in which disciplined interaction and runtime adaptation are intertwined concerns. In this short note, we summarize the main features of our session-typed framework with runtime adaptation, and recall its basic correctness properties. We illustrate our framework by means of examples. In particular, we present a session representation of supervision trees, a mechanism for enforcing fault-tolerant applications in the Erlang language.
Lecture Notes in Computer Science, 2004
We define a language whose type system, incorporating session types, allows complex protocols to be specified by types and verified by static typechecking. A session type, associated with a communication channel, specifies the state transitions of a protocol and also the data types of messages associated with transitions; thus typechecking can verify both correctness of individual messages and correctness of sequences of transitions. Previously session types have mainly been studied in the context of the π-calculus; instead, our formulation is based on a multi-threaded functional language with side-effecting input/output operations. Our typing judgements statically describe dynamic changes in the types of channels, our channel types statically track aliasing, and our function types not only specify argument and result types but also describe changes in channels. We formalize the syntax, semantics and typing rules of our language, and prove subject reduction and runtime type safety theorems.
Lecture Notes in Computer Science, 2007
A session takes place between two parties; after establishing a connection, each party interleaves local computations and communications (sending or receiving) with the other. Session types characterise such sessions in terms of the types of values communicated and the shape of protocols, and have been developed for the π-calculus, CORBA interfaces, and functional languages. We study the incorporation of session types into object-oriented languages through MOOSE, a multi-threaded language with session types, thread spawning, iterative and higher-order sessions. Our design aims to consistently integrate the objectoriented programming style and sessions, and to be able to treat various case studies from the literature. We describe the design of MOOSE, its syntax, operational semantics and type system, and develop a type inference system. After proving subject reduction, we establish the progress property: once a communication has been established, well-typed programs will never starve at communication points.
2012
Session types allow communication protocols to be specified type-theoretically so that protocol implementations can be verified by static type checking. We extend previous work on session types for distributed object-oriented languages in three ways. (1) We attach a session type to a class definition, to specify the possible sequences of method calls. (2) We allow a session type (protocol) implementation to be modularized, i.e. partitioned into separatelycallable methods. We treat session-typed communication channels as objects, integrating their session types with the session types of classes. The result is an elegant unification of communication channels and their session types, distributed object-oriented programming, and a form of typestate supporting non-uniform objects, i.e. objects that dynamically change the set of available methods. We define syntax, operational semantics, a sound type system, and a sound and complete type checking algorithm for a small distributed class-based objectoriented language with structural subtyping. Static typing guarantees that both sequences of messages on channels, and sequences of method calls on objects, conform to type-theoretic specifications, thus ensuring type-safety. The language includes expected features of session types, such as delegation, and expected features of object-oriented programming, such as encapsulation of local state. The main ideas presented herein have been implemented as a prototype, extending Java 1.4.
2020
Whereas ordinary types approximate the results, session types approximate communication among computations. As a form of typestate, they describe not only what is communicated now but also what is to be communicated next. Writing session-typed programs in an ordinary programming language such an OCaml requires inordinary cleverness to simulate type-level computations and linear typing – meaning the implementation and the error messages are very hard to understand. One is constantly reminded of template metaprogramming in C++. We present a system exploring a very different approach to session typing: lowering type-level sophistry to ordinary programming, while maintaining the static assurances. Error messages are detailed and customizable, and one can use an ordinary debugger to investigate session-type problems. Our system is a binary-session–typed DSL for service-oriented programming in OCaml, supporting multiple communication channels, internal and external choices, recursion, and...
2003
We define a language whose type system, incorporating session types, allows complex protocols to be specified by types and verified by static typechecking. Although session types are well understood in the context of the π-calculus, our formulation is based on λ-calculus with side-effecting input/output operations and is different in significant ways. Our typing judgements statically describe dynamic changes in the types of channels, our channel types statically track aliasing, and our function types not only specify argument and result types but also describe changes in channel types. After formalising the syntax, semantics and typing rules of our language, and proving a subject reduction theorem, we outline some possibilities for adding references, objects and concurrency.
Theoretical Computer Science, 2006
We define a language whose type system, incorporating session types, allows complex protocols to be specified by types and verified by static typechecking. A session type, associated with a communication channel, specifies the state transitions of a protocol and also the data types of messages associated with transitions; thus typechecking can verify both correctness of individual messages and correctness of sequences of transitions. Previously, session types have mainly been studied in the context of the π-calculus; instead, our formulation is based on a multi-threaded functional language with side-effecting input/output operations. Our typing judgements statically describe dynamic changes in the types of channels, and our function types not only specify argument and result types but also describe changes in channels. We formalize the syntax, semantics and type checking system of our language, and prove subject reduction and runtime type safety theorems.
ArXiv, 2021
Theories and tools based on multiparty session types offer correctness guarantees for concurrent programs that communicate using message-passing. These guarantees usually come at the cost of an intrinsically top-down approach, which requires the communication behaviour of the entire program to be specified as a global type. This paper introduces kmclib: an OCaml library that supports the development of correct message-passing programs without having to write any types. The library utilises the meta-programming facilities of OCaml to automatically infer the session types of concurrent programs and verify their compatibility (k-MC [13]). Well-typed programs, written with kmclib, do not lead to communication errors and cannot get stuck.
Lecture Notes in Computer Science, 2014
Session types are types for distributed communicating processes. They were born from process encodings of data structures and typical interaction scenarios in an asynchronous version of the π-calculus, and are being studied and developed as a potential basis for structuring concurrent and distributed computing, as well as in their own right. In this paper, we introduce basic ideas of sessions and session types, outline their key technical elements, and discuss how they may be usable for programming, drawing from our experience and comparing with existing paradigms, especially concurrent objects such as actors. We discuss how session types can offer a programming framework in which communications are structured both in program text and at run-time.
Lecture Notes in Computer Science, 2005
In the age of the world-wide web and mobile computing, program- ming communication-centric software is essential. Thus, programmers and pro- gram designers are exposed to new levels of complexity, such as ensuring the correct composition of communication behaviours and guaranteeing deadlock- freedom of their protocols. This paper proposes the language Ldoos, a simple distributed object-oriented language augmented with session communication
2008
In network applications it is crucial to have a mechanism to guarantee that communications evolve correctly according to the agreed protocol. Session types offer a method for abstracting and validating structured communication sequences (sessions). In this paper we propose union types for refining and enhancing the flexibility of session types in the context of communication centred and object oriented programming. We demonstrate our ideas through an example and a calculus formalising the main issues of the present approach. The type system garantees that, in well-typed executable programs, after a session has started, the values sent and received will be of the appropriate type, and no process can get stuck forever.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.