Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2016, Annalen der Physik
https://doi.org/10.1002/andp.201600105…
6 pages
1 file
After an initial burst of excitement about its extraordinary implications for our concept of space and time, the theory of general relativity underwent a thirty-year period of stagnation, during which only a few specialists worked on it, achieving little progress. In the aftermath of World War II, however, general relativity gradually re-entered the mainstream of physics, attracting an increasing number of practitioners and becoming the basis for the current standard theory of gravitation and cosmology-a process Clifford Will baptized the Renaissance of General Relativity. The recent detection of gravitational radiation by the LIGO experiment can be seen as one of the most outstanding achievements in this long-lasting historical process. In the paper, we present a new multifaceted historical perspective on the causes and characteristics of the Renaissance of General Relativity, focusing in particular on the case of gravitational radiation in order to illustrate this complex and far-reaching process.
European Physical Journal H, 2017
Einstein’s 1915 theory of gravitation, also known as General Relativity, is now considered one of the pillars of modern physics. It contributes to our understanding of cosmology and of fundamental interactions between particles. But that was not always the case. Between the mid-1920s and the mid-1950s, General Relativity underwent a period of stagnation, during which the theory was mostly considered as a stepping-stone for a superior theory. In a special issue of EPJ H just published, historians of science and physicists actively working on General Relativity and closely related fields share their views on the process, during the post-World War II era, in particular, which saw the “Renaissance” of General Relativity, following progressive transformation of the theory into a bona fidae physics theory. In this special issue, new insights into the historical process leading to this renaissance point to the extension of the foundation of the original theory, ultimately leading to a global transformation in its character. Contributions from several experts reveals that the theory of 1915 was insufficient to reach firm conclusions without being complemented by intuitions drawn from the resources of pre-relativistic physics. Or, in the case of cosmology, the theory needed to be complemented by philosophical considerations that were hardly generalizable to help solve more mundane problems. As physicist Pascual Jordan puts it, there was a “mismatch between the simplicity of the physical and epistemological foundations and the annoying complexity of the corresponding thicket of formulae.” A number of contributions in this special issue also explain how the theory underwent a period of successive controversies, leading by the 1960s, to the renaissance of the theory. Subsequently, it became in the 1970s, an important, empirically well-tested branch of theoretical physics related to the new, successful sub-discipline of relativistic astrophysics.
BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE, 2007
Boston Studies in the Philosophy of Science, 2007
Isis; an international review devoted to the history of science and its cultural influences, 2015
The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into account in an integrated narrative intellectual developments, epistemological problems, and technological advances; the characteristics of post-World War II and Cold War science; and newly emerging institutional settings. It argues that such a framework can help us understand this renaissance of general relativity as a result of two main factors: the recognition of the untapped potential of general relativity and an explicit effort at community building, which allowed this formerly di...
Choice Reviews Online
To commemorate the 100th anniversary of general relativity, the International Society on General Relativity and Gravitation (ISGRG) commissioned a Centennial Volume, edited by the authors of this article. We jointly wrote introductions to the four Parts of the Volume which are collected here. Our goal is to provide a bird's eye view of the advances that have been made especially during the last 35 years, i.e., since the publication of volumes commemorating Einstein's 100th birthday. The article also serves as a brief preview of the 12 invited chapters that contain in-depth reviews of these advances. The volume will be published by Cambridge University Press and released in June 2015 at a Centennial conference sponsored by ISGRG and the Topical Group of Gravitation of the American Physical Society.
Published in the Science and Technology Journal - UK., 2012
“The general theory of relativity is regarded as the greatest intellectual achievement of any one person,” (Glendenning 2007), and 2015 will be the centenary of its publication. In part 1 of this report we explored the origins of the special theory of relativity, and the science leading up to its publication in 1905. The origin of the general theory of relativity is quite a different story and so this paper is about its development and the main steps that Einstein took to bring it to fruition. The special theory of relativity, was concerned mainly with the behaviour of light, or objects moving at speeds comparable to light, in a non-inertial reference frame; namely, a frame of reference that has no acceleration and does not include gravity. In order to include gravity and acceleration in relativity, Einstein would have to rewrite the law of gravity and use complex mathematical geometry to do so.
American Journal of Space Science, 2013
The History of Gravity encompasses many different versions of the idea of the Gravitational interaction, which starts already from the Presocratic Atomists, continues to the doctrines of the Platonic and Neoplatonic School and of the Aristotelian School, passes through the works of John Philoponus and John Bouridan and reaches the visions of Johannes Kepler and Galileo Galilei. Then, the major breakthrough in the Theory of Motion and the Theory of Gravity takes place within the realm of Isaac Newton's most famous Principia and of the work of Gottfried Leibniz, continues with the contributions of the Postnewtonians, such as Leonhard Euler, reaches the epoch of its modern formulation by Ernst Mach and other Giants of Physics and Philosophy of this epoch, enriches its structure within the work of Henry Poincare and finally culminates within the work of Albert Einstein, with the formulation of the Theory of Special Relativity and of General Relativity at the begin of the 20th century. The evolution of the Theory of General Relativity still continues up to our times, is rich in forms it takes and full of ideas of theoretical strength. Many fundamental concepts of the Epistemology and the History of Physics appear in the study of the Theory of Gravity, such as the notions of Space, of Time, of Motion, of Mass, in its Inertial, Active Gravitational and Passive Gravitational form, of the Inertial system of reference, of the Force, of the Field, of the Riemannian Geometry and of the Field Equations. These primary fundamental theoretical and structural notions appearing each time in the corresponding Theories of Gravity and within the various Paradigms of the Gravitational interaction. We shall refer briefly to the History of Gravity, mentioning only a few landmarks or great personalities which shaped these fundamental physical and epistemological notions.
2017
The Meaning of Relativity, also known as Four Lectures on Relativity, is Einstein's definitive exposition of his special and general theories of relativity. It was written in the early 1920s, a few years after he had elaborated his general theory of relativity. Neither before nor afterward did he offer a similarly comprehensive exposition that included not only the theory's technical apparatus but also detailed explanations making his achievement accessible to readers with a certain mathematical knowledge but no prior familiarity with relativity theory. In 1916, he published a review paper that provided the first condensed overview of the theory but still reflected many features of the tortured pathway by which he had arrived at his new theory of gravitation in late 1915. An edition of the manuscript of this paper with introductions and detailed commentaries on the discussion of its historical contexts can be found in The Road to Relativity. 1 Immediately afterward, Einstein wrote a nontechnical popular account, Relativity-The Special and General Theory. 2 Beginning with its first German edition, in 1917, it became a global bestseller and marked the first triumph of relativity theory as a broad cultural phenomenon. We have recently republished this book with extensive commentaries and historical contexts that document its global success. These early accounts, however, were able to present the theory only in its infancy. Immediately after its publication on 25 November 1915, Einstein's theory of general relativity was taken up, elaborated, and controversially discussed by his colleagues, who included physicists, mathematicians, astronomers, and philosophers. Einstein himself also made further fundamental contributions to the development of his theory, exploring consequences such as gravitational waves and cosmological solutions, elucidating concepts such as that of the energy and momentum of the gravitational field, and even reinterpreting basic aspects of the theory. A turning point was the confirmation of the bending of light in a gravitational field, which, as predicted by general relativity, was observed during a solar eclipse in 1919. These were the formative years of relativity in which the theory essentially received the structure in which it later became one of the pillars of modern physics. The Meaning of Relativity is the paradigmatic text of this period, reflecting not only Einstein's own efforts but also the engagement of his contemporaries with the theory. Einstein evidently returned to the theory of relativity in many later publications, both specialized and popular. He later also enriched The Meaning of Relativity with appendixes discussing further developments. But he never made another attempt at such an all-encompassing presentation in which he painstakingly motivated, explained, and discussed its basic principles and their consequences.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
arXiv (Cornell University), 2008
2016
Annalen der Physik, 2012
Classical and Quantum Gravity, 1999
Einstein Studies, 2020
International Journal of Physics, 2014, Vol. 2, No. 6, 267-276, 2014
Journal of Aeronautics and Aerospace Engineering, 2016