Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2007, nature cell …
…
19 pages
1 file
Extension of neurites from a cell body is essential to form a functional nervous system; however, the mechanisms underlying neuritogenesis are poorly understood. Ena/VASP proteins regulate actin dynamics and modulate elaboration of cellular protrusions. We recently reported that cortical axon-tract formation is lost in Ena/VASP-null mice and Ena/VASP-null cortical neurons lack filopodia and fail to elaborate neurites. Here, we report that neuritogenesis in Ena/VASP-null neurons can be rescued by restoring filopodia formation through ectopic expression of the actin nucleating protein mDia2. Conversely, wildtype neurons in which filopodia formation is blocked fail to elaborate neurites. We also report that laminin, which promotes the formation of filopodia-like actin-rich protrusions, rescues neuritogenesis in Ena/VASP-deficient neurons. Therefore, filopodia formation is a key prerequisite for neuritogenesis in cortical neurons. Neurite initiation also requires microtubule extension into filopodia, suggesting that interactions between actin-filament bundles and dynamic microtubules within filopodia are crucial for neuritogenesis.
…, 2007
Mammalian cortical development involves neuronal migration and neuritogenesis; this latter process forms the structural precursors to axons and dendrites. Elucidating the pathways that regulate the cytoskeleton to drive these processes is fundamental to our understanding of cortical development. Here we show that loss of all three murine Ena/VASP proteins, a family of actin regulatory proteins, causes neuronal ectopias, alters intralayer positioning in the cortical plate, and, surprisingly, blocks axon fiber tract formation during corticogenesis. Cortical fiber tract defects in the absence of Ena/VASP arise from a failure in neurite initiation, a prerequisite for axon formation. Neurite initiation defects in Ena/VASP-deficient neurons are preceded by a failure to form bundled actin filaments and filopodia. These findings provide insight into the regulation of neurite formation and the role of the actin cytoskeleton during cortical development.
Advances in Neurobiology, 2010
Behavior and other neural functions are based on neural circuits that develop over a prolonged period, which lasts in humans from the second fetal month through postnatal years. These circuits develop as neurons extend complex cytoplasmic processes, long axons and highly branched dendrites, expressing intrinsic morphogenetic behaviors while interacting with other cells and molecules of the developing organism. Actin-based motility dominates this morphogenetic process of developing neural circuits. Actin, always one of the most abundant intracellular proteins in neurons, is expressed at its highest levels during neuronal morphogenesis ). An analysis of the actin content of embryonic sympathetic neurons indicated that actin comprises up to 20% of total cell protein (Fine and Bray 1971). Much of this actin is used in the motility that drives the formation of axons and dendrites. This chapter describes the roles of actin in the intrinsic mechanisms of morphogenesis of axons and dendrites and the extrinsic environmental features that regulate where and when axons and dendrites grow.
Molecular Biology of the Cell, 2006
Oxford Open Neuroscience
The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-d...
PLOS Biology, 2015
The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca 2+ /CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.
Developmental Cell, 2008
Although much evidence suggests that axon growth and guidance depend on well-coordinated cytoskeletal dynamics, direct characterization of the corresponding molecular events has remained a challenge. Here, we address this outstanding problem by examining neurite outgrowth stimulated by local application of cell adhesion substrates. During acute outgrowth, the advance of organelles and underlying microtubules into the central domain was correlated with regions of attenuated retrograde actin network flow in the periphery. Interestingly, as adhesion sites matured, contractile actin arc structures, known to be regulated by the Rho/Rho Kinase/myosin II signaling cascade, became more robust and coordinated microtubule movements in the growth cone neck. When Rho Kinase was inhibited, although growth responses occurred with less of a delay, microtubules failed to consolidate into a single axis of growth. These results reveal a new role for Rho Kinase and myosin II contractility in regulation of microtubule behavior during neuronal growth.
Journal of Cell Science, 1996
ABSTRACTIn vitro, developing neurons progress through well-defined stages to form an axon and multiple dendrites.In vivo, neurons are derived from progenitors within a polarised neuroepithelium and it is not clear how axon initiation observedin vitrorelates to what occurs in a complex, three-dimensionalin vivoenvironment. Here we show that the position of axon initiation in embryonic zebrafish spinal neurons is extremely consistent across neuronal sub-types. We investigated what mechanisms may regulate axon positioningin vivoand found that microtubule organising centres are located distant from the site of axon initiation in contrast to that observedin vitro, and that microtubule plus-ends are not enriched in the axon during axon initiation. F-actin accumulation precedes axon formation and nascent axons form but are not stabilised in the absence of microtubules. Laminin depletion removes a spatial cue for axon initiation but axon initiation remains robust.
Neuron, 2012
Nature Cell Biology, 2007
Filopodial actin bundles guide microtubule assembly in the growth cone peripheral (P) domain and retrograde actin-network flow simultaneously transports microtubules rearward. Therefore, microtubule-end position is determined by the sum of microtubule assembly and retrograde transport rates. However, how filopodia actually affect microtubule assembly dynamics is unknown. To address this issue we quantitatively assessed microtubule and actin dynamics before and after selective removal of filopodia. Filopodium removal had surprisingly little effect on retrograde actin-flow rates or underlying network structures, but resulted in an approximate doubling of peripheral microtubule density and deeper penetration of microtubules into the P domain. The latter stemmed from less efficient coupling of microtubules to remaining actin networks and not from a change in microtubule polymer dynamics. Loss of filopodia also resulted in increased lateral microtubule movements and a more randomized microtubule distribution in the P domain. In summary, filopodia do not seem to be formally required for microtubule advance; however, their presence ensures radial distribution of microtubules in the P domain and facilitates microtubule transport by retrograde flow. The resulting dynamic steady state has interesting implications for rapid microtubule-positioning responses in the P domain.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Open biology, 2013
The Journal of Cell Biology, 2002
2021
Developmental Cell, 2005
Journal of cell science, 1991
Encyclopedia of Neuroscience, 2009
Molecular Neurobiology, 2008
Scientific Reports
EMBO reports
Cell Motility and the Cytoskeleton, 2003
The Journal of Neuroscience, 1996
Journal of Cell Science, 2017
Current Opinion in Neurobiology, 2013