Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2008, The Eleventh Marcel Grossmann Meeting
Our review is devoted to three promising research lines in quantum cosmology and the physics of the early universe. The nonperturbative renormalization programme is making encouraging progress that we here assess from the point of view of cosmological applications: Lagrangian and Hamiltonian form of pure gravity with variable G and Λ; power-law inflation for pure gravity; an accelerating universe without dark energy. In perturbative quantum cosmology, on the other hand, diffeomorphism-invariant boundary conditions lead naturally to a singularity-free one-loop wave function of the Universe. Last, but not least, in the braneworld picture one discovers the novel concept of cosmological wave function of the bulk space-time. Its impact on quantum cosmology and singularity avoidance is still, to a large extent, unexplored.
Quantum Cosmology in the Unified Field, 2023
Quantum Cosmology describes the nature of the universe from a perspective of an unobserved and largely unseen microcosm forming the basis for an experienced and observed macrocosm. It so presents a cosmogenesis, a description of the origins as an ontology for cosmological models. The building blocks of an experienced physical reality in atomic, molecular and subatomic constituents then emerge in models and paradigms of science from an observed and measured wave-particle duality which couples the microcosm of the quantum realm to its macrocosmic cooperator within a collectivized physical reality. Quantum Cosmology proposes the emergence of the quantum world manifesting in an experienced spacetime of energy interactions for a thermodynamically expanding universe to derive from a preexisting timespace forming the reason and purpose for the existence of a physical reality experienced in the world of the macrocosm. The relevant physics for the kaleidoscope and interplay of energy describing the universe modelled in the physics of a Planck-Einstein black body radiator then utilizes the emitted electromagnetic radiation spectrum to derive and apply the initial and boundary conditions for the cosmology manifesting in the experienced spacetime. Quantum Cosmology expands on the premises of Special and General Relativity for a description of spacetime in introducing the concept of Quantum Relativity (QR), emerging from the timespace to become the cornerstone for a Unified Field of Quantum Relativity (UFoQR). The Unified Field defines the parameters for the microcosmic reality experienced and observed in spacetime from the platform of the timespace in the emergence of space and time from an algorithmically defined energy matrix described in a multidimensional setting of mathematical logistical statements and principles. The birth of space in the formulation of an inflaton and the birth of time in the form of an instanton follow the self-generation of dimensions from a prior abstractly defined existence in timespace to become a multidimensional physicalized reality in the spacetime. The abstract nature of the timespace as originator for the spacetime is defined as a form of universalized consciousness and as a concept of being 'self-aware' of occupying the spacetime from a prior state of being unaware in the spacelessness and timelessness of the timespace. In particular the occupancy of spacetime volumars as the basis universalized consciousness is defined in Quantum Relativity as a spacial awareness in the form of a radius independent form of quantum spin-acceleration as the frequency over time differential df/dt defining an initializing maximized frequency permutation count. The square of frequency then forms a basis to couple maximized and minimized energy states, modelled on a multidimensional 12-dimensional cosmology described as a T-duality modular mirror duality. The nature of quantum gravitation, for example, then is described in gravitational waves using the squared frequency state (as G times density) to couple to the universalized consciousness quantization in the form of the gravitational parameter GM with mensuration units identical to the universal consciousness quantum as the magnetic charge of a Dirac monopole and as evidenced in the charge formulation of Newman-Kerr black hole s(r)ingularities (manifold singularity without thickness). The spacetime realism intersecting the timespace abstraction then becomes the multidimensional energy continuum for the wave-particle duality enabling the microcosm to self-replicate in holographic fractalization to evolve into an observable and measurable macrocosmic physical reality. This book is presented for the scientifically literate reader and researcher and can be said to follow a Newtonian tradition and to be inclusive of an holistic metaphysically overviewing cosmology.
1992
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of Λ-a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scalar mode and the short distance general relativistic limit in a special frame which is related by a nonlocal conformal transformation to the original metric. The role of compactness and regularity of spacetime in the Euclidean version of the Schwinger-Keldysh technique is discussed.
1997
The basic problem of quantum cosmology is the definition of the quantum state of the universe, with appropriate boundary conditions on Riemannian three-geometries. This paper describes recent progress in the corresponding analysis of quantum amplitudes for Euclidean Maxwell theory and linearized gravity. Within the framework of Faddeev-Popov formalism and zeta-function regularization, various choices of mixed boundary conditions lead to a deeper understanding of quantized gauge fields and quantum gravity in the presence of boundaries.
In this review article we compare the recent work of Peter Lynds, "On a finite universe with no beginning or end", with that of Stephen Hawking, primarily "Quantum Cosmology, M-Theory, and the Anthropic Principle", and two foundational works by Sean M. Carroll and Jennifer Chen, "Does Inflation Provide Natural Conditions for the Universe" and "Spontaneous Inflation and the Origin of the Arrow of Time", in order to evaluate their comparative treatments of the nature and role of causality, time ordering, thermodynamic reversibility, singularities and boundary conditions in the formation of the early universe. We briefly reference Smolin and Kauffman's recent arguments with respect to possible processes of "evolutionary selection" in early universe formation as an alternative explanation to key elements of Hawking's earlier "M-Theory", and its attendant anthropic principle. We also briefly excerpt a short section of Smolin's recent work on topology in quantum loop gravity, simply as an illustrative example of the type of complex quantum topological transformation which he offers as a theoretical alternative to string theory in quantum cosmology.
Universe
Some time ago, when I first inquired as to ‘what quantum cosmology is about’, I did approach the hall with a combination of caution as well as eagerness [...]
Journal of Cosmology and Astroparticle Physics, 2009
In loop quantum cosmology, non-perturbative quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce without introducing any new degrees of freedom. Though fundamentally discrete, the theory admits a continuum description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain the corresponding effective action, establishing in this way the covariance of the theory for the first time. This result provides new insights on the continuum properties of the discrete structure of quantum geometry and opens new avenues to extract physical predictions such as those related to gauge invariant cosmological perturbations.
Journal of Mathematical Physics, 2019
We obtain the wave functions associated with the quantum Newtonian universe with a cosmological constant which is described by the Schrödinger equation and discuss some aspects of its dynamics for all forms of energy density, namely, matter, radiation, vacuum, dark energy, and quintessence. These wave functions of the quantum Newtonian universe are obtained in terms of Heun's functions and the respective energy levels are shown. We use these solutions to investigate the expansion of the universe and found that the asymptotic behavior for the scale factor is R ∼ e t for whatever the form of energy density is. We also analyze the behavior of the universe at early stages.
Physical Review D, 2013
Cosmological perturbations are generally described by quantum fields on (curved but) classical space-times. While this strategy has a large domain of validity, it can not be justified in the quantum gravity era where curvature and matter densities are of Planck scale. Using techniques from loop quantum gravity, the standard theory of cosmological perturbations is extended to overcome this limitation. The new framework sharpens conceptual issues by distinguishing between the true and apparent trans-Planckian difficulties and provides sufficient conditions under which the true difficulties can be overcome within a quantum gravity theory. In a companion paper, this framework is applied to the standard inflationary model, with interesting implications to theory as well as observations.
2015
2 Stuart Kauffman and Lee Smolin provide us with an interesting introduction to some of the problems of modern cosmology in ―A Possible Solution For The Problem Of Time In Quantum Cosmology‖:1 Cosmology, which came into its own as a science only about thirty years ago, is
1999
A crucial problem in quantum cosmology is a careful analysis of the one-loop semiclassical approximation for the wave function of the universe, after an appropriate choice of mixed boundary conditions. The results for Euclidean quantum gravity in four dimensions are here presented, when linear covariant gauges are implemented by means of the Faddeev-Popov formalism. On using ζ-function regularization and a mode-by-mode analysis, one finds a result for the one-loop divergence which agrees with the Schwinger-DeWitt method only after taking into account the non-trivial effect of gauge and ghost modes. For the gravitational field, however, the geometric form of heat-kernel asymptotics with boundary conditions involving tangential derivatives of metric perturbations is still unknown. Moreover, boundary effects are found to be responsible for the lack of one-loop finiteness of simple supergravity, when only one bounding three-surface occurs. This work raises deep interpretative issues about the admissible backgrounds and about quantization techniques in quantum cosmology.
2010
Quantum cosmology from the late sixties into the early XXI st century is reviewed and appraised in the form of a debate, set up by two presentations on mainly the Wheeler-DeWitt quantization and on loop quantum cosmology, respectively. (Open) questions, encouragement and guiding lines shared with the audience are provided here.
Cosmology is the branch of astrophysics concerned with the large-scale structure of the cosmos and (in the current interpretation) the origin of the universe. Yet the scientific method employed in other branches of physics consists in equating the origins of the constituents of the physical world-the particles and fields that appear in it-to the ends of other elements: science seeks to explain the world from a principle of conservation. It thus appears incongruous that an explanation of the large-scale structure of the universe should require the addition of another "origin", that of the universe as a whole. If the universe had a beginning, then matter and motion, space and time, had to be created. This point of view is obviously incompatible with a principle of conservation. A model that is consistent with the conservation principle, and therefore requires no cosmic beginning, can be investigated by examining the current conception of the large-scale structure of space and time in the light of physical theory. Analysis reveals that the conservation-violating universe model contradicts other theoretical principles which have received confirmation from empirical measurement. An alternative model is proposed to circumvent these difficulties, and an extension of general relativity theory is posited. ================================================================== Cosmology in the twentieth century has been dominated by two major advances: one observational, the other theoretical. The former-the discovery that the spectral lines of light emitted by external galaxies were shifted toward the red in proportion to distance-constitutes the primary empirical foundation for a cosmological model. How this correspondence between redshift and distance is interpreted in the light of theory determines the model. Astronomers presently acknowledge that a universe model must be predicated upon the analytical framework established by the second scientific advance-the general theory of relativity. But unlike the present model for cosmology, relativity unambiguously retains a conservation theorem for momentum and energy. If the accepted universe model is found to exhibit further inconsistencies with relativity, then it is necessary to abandon this model in favour of one that concurs rigorously with theoretical principles.
Physics of the Dark Universe, 2017
We endorse the context that the cosmological constant problem is a quantum cosmology issue. Therefore, in this paper we investigate the q-deformed Wheeler-DeWitt equation of a spatially closed homogeneous and isotropic Universe in the presence of a conformally coupled scalar field. Specifically, the quantum deformed Universe is a quantized minisuperspace model constructed from quantum Heisenberg-Weyl U q (h 4) and U q (su(1, 1)) groups. These intrinsic mathematical features allow to establish that (i) the scale factor, the scalar field and corresponding momenta are quantized and (ii) the phase space has a non-equidistance lattice structure. On the other hand, such quantum group structure provides us a new framework to discuss the cosmological constant problem. Subsequently, we show that a ultraviolet cutoff can be obtained at 10 −3 eV , i.e., at a scale much larger than the expected Planck scale. In addition, an infrared cutoff, at the size of the observed Universe, emerges from within such quantum deformation of Universe. In other words, the spectrum of the scale factor is upper bounded. Moreover, we show that the emerged cosmological horizon is a quantum sphere S 2 q or, alternatively, a fuzzy sphere S 2 F which explicitly exhibits features of the holographic principle. The corresponding number of fundamental cells equals the dimension of the Hilbert space and hence, the cosmological constant can be presented as a consequence of the quantum deformation of the FLRW minisuperspace.
arXiv (Cornell University), 2004
We study a classical model of gravitation in which a self interacting scalar field is coupled to gravity with the metric undergoing a continuous signature transition. We show that by appropriate duality transformations on the parameters of the scalar field potential one obtains dual signature changing classical solutions for the Einstein field equations. These dual classical solutions correspond to the same quantum cosmology. This suggests that, if the solutions of the Wheeler-DeWitt equation are assumed to be more primitive than the classical solutions, we may arrange for a reasonable jump of dual classical solutions passing through the signature changing hypersurface, provided we introduce a distribution of such dual potentials over Euclidean and Lorentzian regions. This may serve as an alternative scenario for the quantum creation of the Lorentzian universe in which the quantum jumps of dual signature changing classical solutions may play the role of a finite inflation, accompanied by phase transitions, in the early universe. A solution for the cosmological constant problem is proposed based on the self-duality of quantum cosmology.
2014
The development of a quantum theory of gravity has been ongoing in the theoretical physics community for about 80 years, yet it remains unsolved. In this dissertation, we review the loop quantum gravity approach and its application to cosmology, better known as loop quantum cosmology. In particular, we present the background formalism of the full theory together with its main result, namely the discreteness of space on the Planck scale. For its application to cosmology, we focus on the homogeneous isotropic universe with free massless scalar field. We present the kinematical structure and the features it shares with the full theory. Also, we review the way in which classical Big Bang singularity is avoided in this model. Specifically, the spectrum of the operator corresponding to the classical inverse scale factor is bounded from above, the quantum evolution is governed by a difference rather than a differential equation and the Big Bang is replaced by a Big Bounce.
We argue that the Lorentzian path integral is a better starting point for quantum cosmology than the Euclidean version. In particular, we revisit the mini-superspace calculation of the Feynman path integral for quantum gravity with a positive cosmological constant. Instead of rotating to Euclidean time, we deform the contour of integration over metrics into the complex plane, exploiting Picard-Lefschetz theory to transform the path integral from a conditionally convergent integral into an absolutely convergent one. We show that this procedure unambiguously determines which semiclassical saddle point solutions are relevant to the quantum mechanical amplitude. Imposing "no-boundary" initial conditions, i.e., restricting attention to regular, complex metrics with no initial boundary, we find that the dominant saddle contributes a semiclassical exponential factor which is precisely the inverse of the famous Hartle-Hawking result. * Electronic address: [email protected] † Electronic address: [email protected] ‡ Electronic address: [email protected]
Advances in Astronomy, 2009
The cosmological constant problem is principally concerned with trying to understand how the zero-point energy of quantum fields contributes to gravity. Here we take the approach that by addressing a fundamental unresolved issue in quantum theory, we can gain a better understanding of the problem. Our starting point is the observation that the notion of classical time is external to quantum mechanics. Hence there must exist an equivalent reformulation of quantum mechanics which does not refer to an external classical time. Such a reformulation is a limiting case of a more general quantum theory which becomes nonlinear on the Planck mass/energy scale. The nonlinearity gives rise to a quantum-classical duality which maps a “strongly quantum, weakly gravitational” dynamics to a “weakly quantum, strongly gravitational” dynamics. This duality predicts the existence of a tiny nonzero cosmological constant of the order of the square of the Hubble constant, which could be a possible source ...
2008
Despite its great successes in accounting for the current observations, the so called `standard' model of cosmology faces a number of fundamental unresolved questions. Paramount among these are those relating to the nature of the origin of the universe and its early evolution. Regarding the question of origin, the main difficulty has been the fact that within the classical general relativistic framework, the `origin' is almost always a singular event at which the laws of physics break down, thus making it impossible for such an event, or epochs prior to it, to be studied. Recent studies have shown that Loop Quantum Cosmology may provide a non-singular framework where these questions can be addressed. The crucial role here is played by quantum effects, i.e.\ corrections to the classical equations of motion, which are incorporated in effective equations employed to develop cosmological scenarios. In this chapter we shall consider the three main types of quantum effects expected to be present within such a framework and discuss some of their consequences for the effective equations. In particular we discuss how such corrections can allow the construction of non-singular emergent scenarios for the origin of the universe, which are past-eternal, oscillating and naturally emerge into an inflationary phase. These scenarios provide a physically plausible picture for the origin and early phases of the universe, which is in principle testable. We pay special attention to the interplay between these different types of correction terms. Given the absence, so far, of a complete derivation of such corrections in general settings, it is important to bear in mind the questions of consistency and robustness of scenarios based on partial inclusion of such effects.
Classical and Quantum Gravity, 2011
Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: For matter satisfying the usual energy conditions any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues-e.g., the 'horizon problem'-from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this article is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without a loss of continuity.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.