Academia.eduAcademia.edu

Turbomachinery of Gas Turbines in CFD

2023, CFD Open Series

Abstract

Fluid mechanics and thermodynamics are the fundamental sciences used for turbine aerodynamic design and analysis. Several types of fluid dynamic analysis are useful for this purpose. The concept through-flow analysis is widely used in axial-flow turbine performance analysis. This involves solving the governing equations for inviscid flow in the hub-to-shroud plane at stations located between blade rows. The flow is normally considered to be axisymmetric at these locations, but still three-dimensional because of the existence of a tangential velocity component. Empirical models are employed to account for the fluid turning and losses that occur when the flow passes through the blade rows. By contrast, hub-to-shroud through-flow analysis is not very useful for the performance analysis of radial-flow turbomachines such as radial-inflow turbines and centrifugal compressors. The inviscid flow governing equations do not adequately model the flow in the curved passages of radial turbomachines to be used as a basis for performance analysis. Instead, a simplified “pitch-line” or “mean-line” one-dimensional flow model is used, which ignores the hub-to-shroud variations. These also continue to be used for axial-flow turbine performance analysis. Computers are sufficiently powerful today that there is really no longer a need to simplify the problem that much for axial-flow turbomachinery. More fundamental internal flow analyses are often useful for the aerodynamic design of specific components, particularly blade rows. These include 2D flow analyses in either the blade-to-blade or hub to shroud (Through Flow) direction, and Quasi-3D flow analyses developed by combining those 2D analyses. Wall boundary layer analysis is often used to supplement these analyses with an evaluation of viscous effects.