Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Seminars in pediatric surgery
…
12 pages
1 file
Faulty ventral openings of the urethra constitute a broad spectrum of malformations that are subsumed under the term "hypospadia." The normal development of the urethra and the genitals critically depends on the following events: (a) formation of the external genitalia, (b) fate of the cloacal membrane, and (c) formation of the distal urethra. The purpose of this study was to demonstrate these events using microsurgical techniques and scanning electron microscopy in staged rat embryos.
British Journal of Plastic Surgery, 2004
The embryological development of the male urinary system remains a subject of much controversy. As a result the pathogenesis of congenital anomalies such as hypospadias and epispadias, which are presented to the reconstructive surgeon remains poorly understood. A review of the literature identifies its three principal developmental stages: (1) division of the cloaca into the urogenital sinus and hindgut by the urorectal septum and the formation of the perineum; (2) the extension of the cloaca and its epithelium in the form of the urethral plate through the developing genital tubercle; (3) the separation of this extension from the surface during the formation of the urethra. This study, which uses a mouse model, examines these developmental stages in detail and together with a comprehensive review of the literature resolves many of the controversies relating to the development of the male urinary system. It reveals new insights into the origin of the associated congenital defects.
Differentiation, 2016
We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube.
Differentiation, 1999
The most widely accepted mechanism of male urethral development proposes that the urethral plate is elevated by urethral folds which fuse ventrally in a proximal-to-distal sequence. Unlike its proximal counterpart, the urethra which forms within the glans is lined by a stratified squamous epithelium and has a more controversial development. One theory supports the idea that fusion of the urethral folds extends all the way to the tip of the glans. Another theory suggests that a solid ectodermal ingrowth of epidermis canalizes the glandar urethra. We hypothesized that the use of immunohistochemical staining and tissue recombinant grafting would delineate the epithelia involved and lend clues to their origin. Thirty-six human fetal phallic specimens of gestational ages 5-22 weeks were sectioned and stained immunohistochemically with antibodies raised against different cytokeratins. Evaluation of the sections showed that the urethral plate, an extension of the urogenital sinus, extended to the tip of the phallus and maintained patency and continuity throughout the process of urethral development. The entire urethra, including the glans portion, was formed by dorsal extension and disintegration of the urethal plate combined with ventral growth and fusion of the urethral folds. Sections of the distal glandar urethra showed no evidence of a solid ectodermal ingrowth. Rather, immunostaining results at different ages suggested differentiation of the endodermal urethral plate into a stratified squamous epithelium. To determine whether urothelium could be induced to express a stratified squamous phenotype, mouse fetal bladder epithelium was combined with rat fetal genital tubercle mes-enchyme and grown under the renal capsule of athymic mice. The bladder epithelium differentiated into a stratified squamous epithelium. Thus, proper mesenchymal signaling may induce differentiation of urothelium into a stratified squamous phenotype, such as during development of the urethra of the glans penis.
British Journal of Plastic Surgery, 2004
Differentiation
Knowledge of penile embryology and anatomy is essential to any pediatric urologist in order to fully understand and treat congenital anomalies. Sex differentiation of the external genitalia occurs between the 7 th and 17 th weeks of gestation. The Y chromosome initiates male differentiation through the SRY gene, which triggers testicular development. Under the influence of androgens produced by the testes, external genitalia then develop into the penis and scrotum. Dorsal nerves supply penile skin sensation and lie within Buck's fascia. These nerves are notably absent at the 12 o'clock position. Perineal nerves supply skin sensation to the ventral shaft skin and frenulum. Cavernosal nerves lie within the corpora cavernosa and are responsible for sexual function. Paired cavernosal, dorsal, and bulbourethral arteries have extensive anastomotic connections. During erection, the cavernosal artery causes engorgement of the cavernosa, while the deep dorsal artery leads to glans enlargement. The majority of venous drainage occurs through a single, deep dorsal vein into which multiple emissary veins from the corpora and circumflex veins from the spongiosum drain. The corpora cavernosa and spongiosum are all made of spongy erectile tissue. Buck's fascia circumferentially envelops all three structures, splitting into two leaves ventrally at the spongiosum. The male urethra is composed of six parts: bladder neck, prostatic, membranous, bulbous, penile, and fossa navicularis. The urethra receives its blood supply from both proximal and distal directions.
Differentiation, 2018
We present a detailed review of fetal development of the male and female human urogenital tract from 8 to 22 weeks gestation at the macroscopic and morphometric levels. Human fetal specimens were sexed based on macroscopic identification of fetal testes or ovaries, Wolffian or Müllerian structures and the presence of the SRY gene in the specimens at or near the indifferent stage (8-9 weeks). Specimens were photographed using a dissecting microscope with transmitted and reflected light. Morphometric measurements were taken of each urogenital organ. During this time period, development of the male and female urogenital tracts proceeded from the indifferent stage to differentiated organs. The kidneys, ureters, and bladder developed identically, irrespective of sex with the same physical dimensions and morphologic appearance. The penis, prostate and testis developed in males and the clitoris, uterus and ovary in females. Androgen-dependent growth certainly influenced size and morphology of the penile urethra and prostate, however, androgen-independent growth also accounted for substantial growth in the fetal urogenital tract including the clitoris.
Differentiation; research in biological diversity
This paper addresses the developmental mechanisms of formation of the mouse and human penile urethra and the possibility that two disparate mechanisms are at play. It has been suggested that the entire penile urethra of the mouse forms via direct canalization of the endodermal urethral plate. While this mechanism surely accounts for development of the proximal portion of the mouse penile urethra, we suggest that the distal portion of the mouse penile urethra forms via a series of epithelial fusion events. Through review of the recent literature in combination with new data, it is unlikely that the entire mouse urethra is formed from the endodermal urethral plate due in part to the fact that from E14 onward the urethral plate is not present in the distal aspect of the genital tubercle. Formation of the distal portion of the mouse urethra receives substantial contribution from the preputial swellings that form the preputial-urethral groove and subsequently the preputial-urethral canal...
British Journal of Plastic Surgery, 2004
It is generally agreed that the urethral plate disintegrates, resulting in the urethral groove. This is subsequently transformed into the urethra by fusion of the urethral folds, which flank its sides. Recently, the existence of such a groove and folds has been denied and this challenge to the long accepted existence of such folds is significant since hypospadias is considered to result from failure of their fusion. The present studies indicate that mesodermal fold formation and its subsequent subepithelial fusion across the midline plays an essential role in urethral tube formation. Disruption of this process readily explains common congenital abnormalities of the urethra.
Tissue engineering. Part B, Reviews, 2017
Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characte...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Differentiation, 2003
Development (Cambridge, England), 2015
Seminars in Pediatric Surgery, 2010
BJU International, 2001
Differentiation
The Journal of Urology, 2015
International braz j urol, 2007
Differentiation, 2012
Bju Int, 2002
Bju International, 2003
Human Reproduction, 2006
Urology, 2002
Journal of Embryology & Stem Cell Research ISSN: 2640-2637 , 2019
Anatomy & cell biology, 2012
Journal of Urology, 2006
Differentiation; research in biological diversity, 2018
British Journal of Urology, 1995
The Journal of experimental zoology, 1976
Anatomy and Embryology, 2004
Central European journal of urology, 2016
Differentiation, 2018