Academia.eduAcademia.edu

The de Bruijn-Erdos Theorem for hypergraphs

2010

Abstract

We also give an absolute lower bound $\cp(n,r) \geq {n \choose r}/{q + r - 1 \choose r}$ when $n = q^2 + q + r - 1$, and for each $r$ characterize the finitely many configurations achieving equality with the lower bound. Finally we note the connection of $\cp(n,r)$ to extremal graph theory, and determine some new asymptotically sharp bounds for the Zarankiewicz problem.