Academia.eduAcademia.edu

Flow Development through a Duct and a Diffuser Using CFD

Abstract

In the present paper an extensive study of rectangular cross-sectioned C-duct and C-diffuser is made by the help of 2-D mean velocity contours. Study of flow characteristics through constant area duct is a fundamental research area of basic fluid mechanics since the concepts of potential flow and frictional losses in conduit flow were established. C-ducts are used in aircraft intakes, combustors, internal cooling systems of gas turbines, ventilation ducts, wind tunnels etc., while diffuser is mechanical device usually made in the form of a gradual conical expander intended to raise the static pressure of the fluid flowing through it. Flow through curved ducts is more complex compared to straight duct due to the curvature of the duct axis and centrifugal forces are induced on the flowing fluid resulting in the development of secondary motion (normal to the primary flow direction) which is manifested in the form of a pair of contra-rotating vortices. For a diffuser in addition to the secondary flow, the diverging flow passage, which causes an adverse stream wise pressure gradient, can lead to flow separation. The combined effect may result n non uniformity of total pressure and total pressure loss at the exit. A comparative study of different turbulent models available in the Fluent using y  as guidance in selecting the appropriate grid configuration and turbulence models are done. Standard k-ε model and RSM models are used to solve the closure problem for both the constant area duct and the diffuser. It has been observed that the Standard k-e model predicts the flow through the constant area duct and the diffuser within a reasonable domain of the y  range.