Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
41 pages
1 file
Neural networks, as powerful tools for data mining and knowledge engineering, can learn from data to build feature-based classifiers and nonlinear predictive models. Training neu-ral networks involves the optimization of non-convex objective functions, and usually the learning process is costly and infeasible for applications associated with data streams. A possible, albeit counter-intuitive alternative is to randomly assign a subset of the networks' weights, so that the resulting optimization task can be formulated as a linear least-squares problem. This methodology can be applied to both feedforward and recurrent networks, and similar techniques can be used to approximate kernel functions. Many experimental results indicate that such randomized models can reach sound performance compared to fully adaptable ones, with a number of favourable benefits, including (i) simplicity of implementation , (ii) faster learning with less intervention from human beings, and (iii) possibility of leveraging over all linear regression and classification algorithms (e.g., l1 norm minimization for obtaining sparse formulations). All these points make them attractive and valuable to the data mining community, particularly for handling large scale data mining in real-time. However, the literature in the field is extremely vast and fragmented, with many results being reintroduced multiple times under different names. This overview aims at providing a self-contained, uniform introduction to the different ways in which randomization can be applied to the design of neural networks and kernel functions. A clear exposition of the basic framework underlying all these approaches helps to clarify innovative lines of research, open problems and, most importantly, foster the exchanges of well-known results throughout different communities.
Information Sciences, 2017
Random Vector Functional-link (RVFL) networks, a class of learner models, can be regarded as feed-forward neural networks built with a specific randomized algorithm, i.e., the input weights and biases are randomly assigned and fixed during the training phase, and the output weights are analytically evaluated by the least square method. In this paper, we provide some insights into RVFL networks and highlight some practical issues and common pitfalls associated with RVFL-based modelling techniques. Inspired by the folklore that "all high-dimensional random vectors are almost always nearly orthogonal to each other", we establish a theoretical result on the infeasibility of RVFL networks for universal approximation, if a RVFL network is built incrementally with random selection of the input weights and biases from a fixed scope, and constructive evaluation of its output weights. This work also addresses the significance of the scope setting of random weights and biases in respect to modelling performance. Two numerical examples are employed to illustrate our findings, which theoretically and empirically reveal some facts and limits of such class of randomized learning algorithms.
ArXiv, 2020
Single layer feedforward networks with random weights are known for their non-iterative and fast training algorithms and are successful in a variety of classification and regression problems. A major drawback of these networks is that they require a large number of hidden units. In this paper, we propose a technique to reduce the number of hidden units substantially without affecting the accuracy of the networks significantly. We introduce the concept of primary and secondary hidden units. The weights for the primary hidden units are chosen randomly while the secondary hidden units are derived using pairwise combinations of the primary hidden units. Using this technique, we show that the number of hidden units can be reduced by at least one order of magnitude. We experimentally show that this technique leads to significant drop in computations at inference time and has only a minor impact on network accuracy. A huge reduction in computations is possible if slightly lower accuracy is...
Lecture Notes in Computer Science, 2019
In this work, a method of random parameters generation for randomized learning of a single-hidden-layer feedforward neural network is proposed. The method firstly, randomly selects the slope angles of the hidden neurons activation functions from an interval adjusted to the target function, then randomly rotates the activation functions, and finally distributes them across the input space. For complex target functions the proposed method gives better results than the approach commonly used in practice, where the random parameters are selected from the fixed interval. This is because it introduces the steepest fragments of the activation functions into the input hypercube, avoiding their saturation fragments.
2007
To accelerate the training of kernel machines, we propose to map the input data to a randomized low-dimensional feature space and then apply existing fast linear methods. Our randomized features are designed so that the inner products of the transformed data are approximately equal to those in the feature space of a user specified shift-invariant kernel. We explore two sets of random features, provide convergence bounds on their ability to approximate various radial basis kernels, and show that in large-scale classification and regression tasks linear machine learning algorithms that use these features outperform state-of-the-art large-scale kernel machines.
2017
Neural networks with random hidden nodes have gained increasing interest from researchers and practical applications. This is due to their unique features such as very fast training and universal approximation property. In these networks the weights and biases of hidden nodes determining the nonlinear feature mapping are set randomly and are not learned. Appropriate selection of the intervals from which weights and biases are selected is extremely important. This topic has not yet been sufficiently explored in the literature. In this work a method of generating random weights and biases is proposed. This method generates the parameters of the hidden nodes in such a way that nonlinear fragments of the activation functions are located in the input space regions with data and can be used to construct the surface approximating a nonlinear target function. The weights and biases are dependent on the input data range and activation function type. The proposed methods allows us to control ...
2017 International Joint Conference on Neural Networks (IJCNN), 2017
Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel RNN, namely recurrent type-2 random vector functional link network (RT2McRVFLN), which provides a highly scalable solution for data streams in a strictly online and integrated framework. It is built upon the psychologically inspired concept of metacognitive learning, which covers three basic components of human learning: what-to-learn, how-to-learn, and when-to-learn. The what-to-learn selects important samples on the fly with the use of online active learning scenario, which renders our algorithm an online semi-supervised algorithm. The how-to-learn process combines an open structure of evolving concept and a randomized learning algorithm of random vector functional link network (RVFLN). The efficacy of the RT2McRVFLN has been numerically validated through two real-world case studies and comparisons with its counterparts, which arrive at a conclusive finding that our algorithm delivers a tradeoff between accuracy and simplicity.
This paper develops multi-layer classifiers and auto-encoders based on the Random Neural Network. Our motivation is to build robust classifiers that can be used in systems applications such as Cloud management for the accurate detection of states that can lead to failures. Using an idea concerning some to soma interactions between natural neuronal cells, we discuss a basic building block constructed of clusters of densely packet cells whose mathematical properties are based on G-Networks and the Random Neural Network. These mathematical properties lead to a transfer function that can be exploited for large arrays of cells. Based on this mathematical structure we build multi-layer networks. In order to evaluate the level of classification accuracy that can be achieved, we test these auto-encoders and classifiers on a widely used standard database of handwritten characters. Abstract. This paper develops multi-layer classifiers and auto-encoders based on the Random Neural Network. Our motivation is to build robust classifiers that can be used in systems applications such as Cloud management for the accurate detection of states that can lead to failures. Using an idea concerning some to soma interactions between natural neuronal cells, we discuss a basic building block constructed of clusters of densely packet cells whose mathematical properties are based on G-Networks and the Random Neural Network. These mathematical properties lead to a transfer function that can be exploited for large arrays of cells. Based on this mathematical structure we build multi-layer networks. In order to evaluate the level of classification accuracy that can be achieved, we test these auto-encoders and classifiers on a widely used standard database of handwritten characters. AQ1
This paper introduces techniques for Deep Learning in conjunction with spiked random neural networks that closely resemble the stochastic behaviour of biological neurons in mammalian brains. The paper introduces clusters of such random neural networks and obtains the characteristics of their collective behaviour. Combining this model with previous work on extreme learning machines, we develop multilayer architectures which structure Deep Learning Architectures a a " front end " of one or two layers of random neural networks, followed by an extreme learning machine. The approach is evaluated on a standard – and large – visual character recognition database, showing that the proposed approach can attain and exceed the performance of techniques that were previously reported in the literature.
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017
This article proposes an original approach to the performance understanding of large dimensional neural networks. In this preliminary study, we study a single hidden layer feed-forward network with random input connections (also called extreme learning machine) which performs a simple regression task. By means of a new random matrix result, we prove that, as the size and cardinality of the input data and the number of neurons grow large, the network performance is asymptotically deterministic. This entails a better comprehension of the effects of the hyper-parameters (activation function, number of neurons, etc.) under this simple setting, thereby paving the path to the harnessing of more involved structures.
2008
In the days when Sussman was a novice, Minsky once came to him as he sat hacking at the PDP-6.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Soft Computing, 2015
Neurocomputing, 2002
The Annals of Applied Probability
Lecture Notes in Computer Science, 2021
Mathematical Modeling and Algorithm Application , 2024
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '03, 2003
arXiv preprint arXiv:1205.0288, 2012
IEEE Transactions on Neural Networks, 2004
Springer eBooks, 2017
2025 International Conference on Learning Representations (ICLR 2025), 2025
Neurocomputing, 2018
Journal of Data Science
Artificial intelligence, 2018