Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Trends in Plant Science
…
12 pages
1 file
2010 marks the 10th anniversary of the completion of the first plant genome sequence (Arabidopsis thaliana). Triggered by advancements in sequencing technologies, many crop genome sequences have been produced, with eight published since 2008. To date, however, only the rice (Oryza sativa) genome sequence has been finished to a quality level similar to that of the Arabidopsis sequence. This trend to produce draft genomes could affect the ability of researchers to address biological questions of speciation and recent evolution or to link sequence variation accurately to phenotypes. Here, we review the current crop genome sequencing activities, discuss how variability in sequence quality impacts utility for different studies and provide a perspective for a paradigm shift in selecting crops for sequencing in the future.
Current opinion in plant biology, 2015
The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes.
Molecular Biotechnology, 2012
Extensive insights into the genome composition, organization, and evolution have been gained from the plant genome sequencing and annotation ongoing projects. The analysis of crop genomes provided surprising evidences with important implications in plant origin and evolution: genome duplication, ancestral re-arrangements and unexpected polyploidization events opened new doors to address fundamental questions related to species proliferation, adaptation, and functional modulations. Detailed paleogenomic analysis led to many speculation on how chromosomes have been shaped over time in terms of gene content and order. The completion of the genome sequences of several major crops, prompted to a detailed identification and annotation of transposable elements: new hypothesis related to their composition, chromosomal distribution, insertion models, amplification rate, and evolution patterns are coming up. Availability of full genome sequence of several crop species as well as from many accessions within species is providing new keys for biodiversity exploitation and interpretation. Re-sequencing is enabling high-throughput genotyping to identify a wealth of SNP and afterward to produce haplotype maps necessary to accurately associate molecular variation to phenotype.
The map-based complete rice genome sequence is now freely available to researchers worldwide, providing the most fundamental tool that should further accelerate efforts to improve the staple crop that feeds more than half the world's population. The finished-quality sequence covers 95% of the 389-Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified. The complete genetic information on rice will serve as a gold mine for genomic research in rice and other cereal species. It will facilitate the identification of many important genes by both forward and reverse genetics strategies, and clarify the relationships between sequence variation and phenotypes. The genome sequence derived from Oryza sativa subspecies japonica can be used as a reference sequence for comparative analysis among Oryza species that will help in understanding the major factors involved in speciation and searching for useful genetic resources. Furthermore, the completed sequence will also serve as a standard for cereal genome comparison and identification of rice orthologous genes in other cereal crops, thereby providing a platform for establishing the genomics of each cereal species.
Theoretical and Applied Genetics, 2013
Many important crop species have genomes originating from ancestral or recent polyploidisation events. Multiple homoeologous gene copies, chromosomal rearrangements and amplification of repetitive DNA within large and complex crop genomes can considerably complicate genome analysis and gene discovery by conventional, forward genetics approaches. On the other hand, ongoing technological advances in molecular genetics and genomics today offer unprecedented opportunities to analyse and access even more recalcitrant genomes. In this review, we describe next-generation sequencing and data analysis techniques that vastly improve our ability to dissect and mine genomes for causal genes underlying key traits and allelic variation of interest to breeders. We focus primarily on wheat and oilseed rape, two leading examples of major polyploid crop genomes whose size or complexity present different, significant challenges. In both cases, the latest DNA sequencing technologies, applied using quite different approaches, have enabled considerable progress towards unravelling the respective genomes. Our ability to discover the extent and distribution of genetic diversity in crop gene pools, and its relationship to yield and qualityrelated traits, is swiftly gathering momentum as DNA sequencing and the bioinformatic tools to deal with growing quantities of genomic data continue to develop. In the coming decade, genomic and transcriptomic sequencing, discovery and high-throughput screening of single nucleotide polymorphisms, presence-absence variations and other structural chromosomal variants in diverse germplasm collections will give detailed insight into the origins, domestication and available trait-relevant variation of polyploid crops, in the process facilitating novel approaches and possibilities for genomics-assisted breeding.
Genome Biology, 2014
The use of high throughput genome-sequencing technologies has uncovered a large extent of structural variation in eukaryotic genomes that makes important contributions to genomic diversity and phenotypic variation. Currently, when the genomes of different strains of a given organism are compared, whole genome resequencing data are aligned to an established reference sequence. However when the reference differs in significant structural ways from the individuals under study, the analysis is often incomplete or inaccurate. Here, we use rice as a model to explore the extent of structural variation among strains adapted to different ecologies and geographies, and show that this variation can be significant, often matching or exceeding the variation present in closely related human populations or other mammals. We demonstrate how improvements in sequencing and assembly technology allow rapid and inexpensive de novo assembly of next generation sequence data into high-quality assemblies that can be directly compared to provide an unbiased assessment. Using this approach, we are able to accurately assess the "pan-genome" of three divergent rice varieties and document several megabases of each genome absent in the other two. Many of the genome-specific loci are annotated to contain genes, reflecting the potential for new biological properties that would be missed by standard resequencing approaches. We further provide a detailed analysis of several loci associated with agriculturally important traits, illustrating the utility of our approach for biological discovery. All of the data and software are openly available to support further breeding and functional studies of rice and other species.
bioRxiv (Cold Spring Harbor Laboratory), 2023
The rice reference genome (Oryza sativa ssp. japonica cv. Nipponbare) has been an important resource in plant science. We now report an improved and haplotype resolved genome sequence based upon more accurate sequencing technology. This improved assembly includes regions missing in earlier genomes sequences and the annotation of more than 3,000 new genes due to greater sequence accuracy. .
Science, 2002
We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
Current Opinion in Plant Biology, 2003
Several more-or less-elaborated rice genome sequences have been produced recently using different strategies. It has become possible to compare them and to unravel the major features of the rice genome in terms of nucleotide composition, repeats, gene content and variability. It has also become possible to compare the rice and Arabidopsis genomes and to evaluate rice as a model genome.
Chinese Science Bulletin, 2001
The sequence of the rice genome holds fundamental information for its biology, including physiology, genetics, development, and evolution, as well as information on many beneficial phenotypes of economic significance. Using a "whole genome shotgun" approach, we have pro-
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Breeding Science, 2010
PLoS ONE, 2010