Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
The more expressive a type system, the more type infor- mation has to be provided in a program. Having to provide a type is sometimes a pain, but lacking expressivity is often even worse. There is a continuous struggle between expressivity and (type-)verbosity. How- ever, even very expressive type systems allow type inference for parts of a program. Generic Haskell is an extension of Haskell that supports defin- ing generic functions. Generic Haskell assumes that the type of a generic function is explicitly specified. This is often no problem, but sometimes it is rather painful to have to specify a type - in particular for generic functions with many dependencies - and sometimes the specified type can be generalized. In this paper, we identify three type inference prob- lems specific to generic functions, and present (partial) solutions to each of them.
2005
The more expressive a type system, the more type information has to be provided in a program. Having to provide a type is sometimes a pain, but lacking expressivity is often even worse. There is a continuous struggle between expressivity and (type-) verbosity. However, even very expressive type systems allow type inference for parts of a program. Generic Haskell is an extension of Haskell that supports defining generic functions. Generic Haskell assumes that the type of a generic function is explicitly specified.
2003
Generic programming aims at making programming more effective by making it more general. Generic programs often embody non-traditional kinds of polymorphism. Generic Haskell is an extension of Haskell [38] that supports the construction of generic programs. Generic Haskell adds to Haskell the notion of structural polymorphism, the ability to define a function (or a type) by induction on the structure of types. Such a function is generic in the sense that it works not only for a specific type but for a whole class of types.
2003
Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes describe the basic constructs of Generic Haskell and highlight the underlying theory.
2007
We report on an extension of Haskell with type(-level) functions and equality constraints. We illustrate their usefulness in the context of phantom types, GADTs and type classes. Problems in the context of type checking are identified and we sketch our solution: a decidable type checking algorithm for a restricted class of type functions. Moreover, functional dependencies are now obsolete: we show how they can be encoded as type functions.
2009
These lecture notes introduce libraries for datatype-generic programming in Haskell. We introduce three characteristic generic programming libraries: lightweight implementation of generics and dynamics, extensible and modular generics for the masses, and scrap your boilerplate. We show how to use them to use and write generic programs. In the case studies for the different libraries we introduce generic components of a medium-sized application which assists a student in solving mathematical exercises.
2007
The last decade has seen a number of approaches to datatype-generic programming: PolyP, Functorial ML,'Scrap Your Boilerplate', Generic Haskell,'Generics for the Masses', and so on. The approaches vary in sophistication and target audience: some propose full-blown programming languages, some suggest libraries, some can be seen as categorical programming methods. In these lecture notes we compare the various approaches to datatype-generic programming in Haskell.
2003
Abstract Generic Haskell is an extension of Haskell that supports the construction of generic programs. During the development of several applications, such as an XML editor and compressor, we encountered a number of limitations with the existing (Classic) Generic Haskell language, as implemented by the current Generic Haskell compiler.
2007
We report on an extension of Haskell with type(-level) functions and equality constraints. We illustrate their usefulness in the context of phantom types, GADTs and type classes. Problems in the context of type checking are identified and we sketch our solution: a decidable type checking algorithm for a restricted class of type functions. Moreover, functional dependencies are now obsolete: we show how they can be encoded as type functions. This paper is submitted to the Implementing Functional Languages workshop, Sept 2007 (IFL07).
2003
Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes discuss three advanced generic programming applications: generic dictionaries, compressing XML documents, and the zipper: a data structure used to represent a tree together with a subtree that is the focus of attention, where that focus may move left, right, up or down the tree.
ACM SIGPLAN …, 2009
Datatype-generic programming is defining functions that depend on the structure, or "shape", of datatypes. It has been around for more than 10 years, and a lot of progress has been made, in particular in the lazy functional programming language Haskell. There are more than 10 proposals for generic programming libraries or language extensions for Haskell. To compare and characterize the many generic programming libraries in a typed functional language, we introduce a set of criteria and develop a generic programming benchmark: a set of characteristic examples testing various facets of datatype-generic programming. We have implemented the benchmark for nine existing Haskell generic programming libraries and present the evaluation of the libraries. The comparison is useful for reaching a common standard for generic programming, but also for a programmer who has to choose a particular approach for datatype-generic programming.
2003
1 Generic Haskell is an extension of Haskell that supports the construction of generic programs. This article describes generic programming in practice. It discusses three advanced generic programming applications: generic dictionaries, compressing XML documents, and the zipper. When describing and implementing these examples, we will encounter some advanced features of Generic Haskell, such as type-indexed data types, dependencies between and generic abstractions of generic functions, adjusting a generic function using a default case, and generic functions with a special case for a particular constructor.
2000
Abstract This paper describes a new approach to generic functional programming, which allows us to define functions generically for all datatypes expressible in Haskell. A generic function is one that is defined by induction on the structure of types. Typical examples include pretty printers, parsers, and comparison functions.
The introduction of multi-parameter type classes in Haskell has been hindered because of problems associated to ambiguity, which occur due to the lack of type specialization during type inference. This paper proposes a minimalist, simple solution to this problem, which requires only a small change to the type inference algorithm and to what has been considered ambiguity in Haskell. It does not depend on the use of programmer specified functional dependencies between type class parameters nor any other extra mechanism, such as associated types. A type system and a type inference algorithm, sound and complete with respect to the type system, are presented.
2010
Abstract Haskell's deriving mechanism supports the automatic generation of instances for a number of functions. The Haskell 98 Report only specifies how to generate instances for the Eq, Ord, Enum, Bounded, Show, and Read classes. The description of how to generate instances is largely informal. The generation of instances imposes restrictions on the shape of datatypes, depending on the particular class to derive. As a consequence, the portability of instances across different compilers is not guaranteed.
Proceedings of the ACM on programming languages, 2019
Type family applications in Haskell must be fully saturated. This means that all type-level functions have to be first-order, leading to code that is both messy and longwinded. In this paper we detail an extension to GHC that removes this restriction. We augment Haskell's existing type arrow, →, with an unmatchable arrow, ↠, that supports partial application of type families without compromising soundness. A soundness proof is provided. We show how the techniques described can lead to substantial code-size reduction (circa 80%) in the type-level logic of commonly-used type-level libraries whilst simultaneously improving code quality and readability. CCS Concepts: • Software and its engineering → Functional languages; Polymorphism; Data types and structures; Reusability.
Journal of Universal Computer Science, 2003
This paper describes a practical type inference algorithm for typing polymorphic and possibly mutually recursive definitions, using Haskell to provide a highlevel implementation of the algorithm.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.