Academia.eduAcademia.edu

Numbers in Action

Humans show a remarkable tendency to describe and think of numbers as being placed on a mental number line (MNL), with smaller numbers located on the left and larger ones on the right. Faster responses to small numbers are indeed performed on the left side of space, while responses to large numbers are facilitated on the right side of space (spatial-numerical association of response codes, SNARC effect). This phenomenon is considered the experimental demonstration of the MNL and has been extensively replicated throughout a variety of paradigms. Nevertheless, the majority of previous literature has mainly investigated this effect by means of response times and accuracy, whereas studies considering more subtle and automatic measures such as kinematic parameters are rare (e.g., in a reaching-to-grasp movement, the grip aperture is enlarged in responding to larger numbers than in responding to small numbers). In this brief review we suggest that numerical magnitude can also affect the what and how of action execution (i.e., temporal and spatial components of movement). This evidence could have large implications in the strongly debated issue concerning the effect of experience and culture on the orientation of MNL. In the 19th century Galton first noted that humans visualize and think of numbers as represented on a mental number line (MNL), usually oriented from left-to-right. Along the MNL smaller numbers are located on the left side and larger ones on the right side (Galton, 1880; Dehaene, 2011). The first, and often replicated, experimental demonstration of the MNL is the fact that adult humans are faster at processing small numbers when responses are executed on the left side of space, and at processing large numbers when responses are executed on the right side of space (spatial-numerical association of response codes, SNARC effect; Dehaene et al., 1993). Since this first evidence, large body of studies have investigated the cognitive representation of numbers using chronometric methods, but the impact of number processing on motor control has been scarcely explored. According to a recent influential hypothesis, cognitive representations of perceptual and semantic information cannot be fully understood without considering their impact on actions (Gallese and Lakoff, 2005). In this vein, here we present a critical review to highlight how the existing knowledge on MNL could be fostered by studies that critically analyze the link between motor actions and numbers.