Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2014, Optical and Infrared Interferometry IV
The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups… The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by grids, and show that it allows piston measures from very broadband fringes with only 3 to 5 pixels per fringe tracker. We show the results of numerical simulation indicating that our device is a good achromatic spatial filter and allowing a first evaluation of its coupling efficiency, which is similar to this of a single mode fiber on a single aperture. Our very preliminary results indicate that HFT has a good chance to be a serious candidate for the most sensitive fringe tracking with the VLTI and also interferometers with much larger number of apertures. On the VLTI the first rough estimate of the magnitude gain with regard to the GRAVITY internal FT is between 2.5 and 3.5 magnitudes in K, with a decisive impact on the VLTI science program for AGNs, Young stars and planet forming disks.
Astronomy & Astrophysics, 2008
Context. At the Very Large Telescope Interferometer, the purpose of the fringe-tracker FINITO is to stabilize the optical path differences between the beams, allowing longer integration times on the scientific instruments AMBER and MIDI. Aims. Our goal is to demonstrate the potential of FINITO for providing H-band interferometric visibilities, simultaneously and in addition to its normal fringe-tracking role. Methods. We use data obtained during the commissioning of the Reflective Memory Network Recorder at the Paranal observatory. This device has permitted the first recording of all relevant real-time data needed for a proper data-reduction. Results. We show that post-processing the FINITO data allows valuable scientific visibilities to be measured. Over the several hours of our engineering experiment, the intrinsic transfer function is stable at the level of ±2%. Such stability would lead to robust measurements of science stars even without the observation of a calibration star within a short period of time. We briefly discuss the current limitations and the potential improvements.
arXiv (Cornell University), 2023
SPIE Proceedings, 2000
The Very Large Telescope (VLT) Observatory on Cerro Paranal (2635 m) in Northern Chile is approaching completion in this year when the fourth of the 8-m Unit Telescopes will see first light. At the same time, the preparation for first fringes of the VLT Interferometer (VLTI) is advancing rapidly with the goal of having the first fringes with two siderostats within this year. In this article we describe the status of the VLTI and its subsystems, we discuss the planning for first fringes with the different telescopes and instruments. Eventually, we present an outlook for the future of interferometry with Very Large Telescopes.
Astronomy & Astrophysics, 2011
Context. With the arrival of the next generation of ground-based imaging interferometers combining from 4 to possibly 6 telescopes simultaneously, there is also a strong need for a new generation of fringe trackers able to cophase such arrays. These instruments have to be very sensitive and to provide robust operations in quickly varying observational conditions. Aims. We aim at defining the optimal characteristics of fringe sensor concepts operating with 4 or 6 telescopes. The current detector limitations impose us to consider solutions based on co-axial pairwise combination schemes. Methods. We independently study several aspects of the fringe sensing process: 1) how to measure the phase and the group delay, and 2) how to combine the telescopes in order to ensure a precise and robust fringe tracking in real conditions. Thanks to analytical developments and numerical simulations, we define the optimal fringe-sensor concepts and compute the expected performance of the 4-telescope one with our dedicated end-to-end simulation tool sim2GFT. Results. We first show that measuring the phase and the group delay by obtaining the data in several steps (i.e. by temporally modulating the optical path difference) is extremely sensitive to atmospheric turbulence and therefore conclude that it is better to obtain the fringe position with a set of data obtained simultaneously. Subsequently, we show that among all co-axial pairwise schemes, moderately redundant concepts increase the sensitivity as well as the robustness in various atmospheric or observing conditions. Merging all these results, end-to-end simulations show that our 4-telescope fringe sensor concept is able to track fringes at least 90% of the time up to limiting magnitudes of 7.5 and 9.5 for the 1.8-and 8.2-meter VLTI telescopes respectively.
New Frontiers in Stellar Interferometry, 2004
FINITO is the first generation VLTI fringe sensor, optimised for three beam observations, recently installed at Paranal and currently used for VLTI optimisation. The PRIMA FSU is the second generation, optimised for astrometry in dualfeed mode, currently in construction. We discuss the constraints of fringe tracking at VLTI, the basic functions required for stabilised interferometric observations, and their different implementation in the two instruments, with remarks on the most critical technical aspects. We provide an estimate of the expected performance and describe some of their possible observing and calibration modes, with reference to the current scientific combiners.
Proceedings of SPIE - The International Society for Optical Engineering, 2012
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of order 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interferometric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 µm. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of ≤400 nm at an operating frequency of 500 Hz.
2002
in press. [5] Paresce, F., et al. 2002a, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press. [6] Percheron, I., et al. 2002, in The VLTI: Challenges for the Future, eds. Garcia P. J. V., Glindemann A., Henning T., Malbet F., JENAM Workshop, in press. [7] Koehler, B., et al. 2002, The Messenger, this volume. [8] Kern, P., et al. 2002, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press. [9] Arsenault, R., et al. 2002, in Adaptive Optical System Technologies II, eds. Bonaccini, D., Wizinowich, P., Proc. SPIE 4839, in press. [10] Paresce, F., et al. 2002b, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press.
Applied Optics, 1996
A new fringe tracker based on photon counting detectors and real time image processing has been implemented on the "Grand Interféromètre à 2 Télescopes" (GI2T) at the Observatoire de la Côte d'Azur. Fringe visibilities have been recorded on P Cygni and other stars across the Hα emission line with optical path differences stabilized to between 4 and 7 µm rms (1% of the coherence length). This paper presents the first results and describes the principle, implementation and performance of the fringe tracker.
Proceedings of SPIE - The International Society for Optical Engineering
The NOVA Fringe Tracker (NFT) is a proposed solution to the call by ESO for a second generation fringe tracking facility. This instrument at the VLTI will enable the cophasing of up to 6 telescopes simultaneously. Using broad band optics with detection from 1.2 to 2.4 microns, a unique configuration is employed that eliminates so-called “photometric crosstalk.” This refers to imbalance in the beam combiner which results in fluctuations of the incoming wavefronts and the proportion of power accepted by a spatial filter masquerading as a visibility, a common problem afflicting previous interferometric instruments and fringe trackers. Also proposed for use in “science instruments” (for the measurement of visibility), the “Polarization-Based Collimated Beam Combiner,” with its achievement of photometric symmetry in hardware, is particularly suited for combined use of the smaller AT (1.8 meter) telescopes with the UT (8 meter) telescopes involving a 20:1 intensity ratio of the interferin...
SPIE Proceedings, 2008
FINITO (the VLTI three beam fringe-tracker) has been offered in September 2007 to the astronomical community for observations with the scientific instruments AMBER and MIDI. In this paper, we describe the last improvements of the fringe-tracking loop and its actual performance when operating with the 1.8m Auxiliary Telescopes. We demonstrate the gain provided to the scientific observations. Finally, we discuss how FINITO real-time data could be used in post-processing to enhance the scientific return of the facility.
SPIE Proceedings, 2008
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.
Optical and Infrared Interferometry and Imaging VIII
Hierarchical Fringe Tracking (HFT) is a fringe tracking concept optimizing the sensitivity in optical long baseline by reducing to an absolute minimum the number of measurements used to correct the OPD fluctuations. By nature, the performances of an HFT do not decreases with the number of apertures of the interferometer and are set only by the flux delivered by the individual telescopes. This a critical feature for future interferometers with large number of apertures both for homodyne and heterodyne operation. Here we report the design and first optical bench tests of integrated optics HFT chips for a 4 telescopes interferometer such as the VLTI. These tests validate the HFT concept and confirm previous estimates that we could track accurately fringes on the VLTI up to nearly K~15.9 with the UTs and K~12.2 with the ATs with a J+H+K fringe tracker with one HFT chip per band. This is typically 2.5 magnitudes fainter than the best potential performance of the current ABCD fringe tracker in the K band. An active longitudinal and transverse chromatic dispersion correction allows the optimization of broad band fiber injections and instrumental contrast. We also present a preliminary evaluation of the potential of such a gain of sensitivity for the observations of AGNs with the VLTI.
2004
We report on observations with MACAO-VLTI to feed the VLT Interferometer in November 2003. The purpose of this observing run was to optimize the feed to the VLTI by varying certain parameters of the curvature AO system and of the interferometer instrument VINCI. All along the main concern about this instrument combination was the differential piston introduced by 2 independent AO systems. A special so-called "piston removal algorithm" has been developed especially for this purpose. Each DM Influence Function is carefully characterized and a pure piston mode is defined to compensate piston over the pupil produced by a given voltage set. Piston is reduced by ~20 using this algorithm. It was found that decreasing the system main gain, while reducing strehl ratio, also reduces high frequency vibrations on the DM and therefore OPD variations. A control frequency of 420 Hz instead of the nominal 350 Hz was found to improve substantially the coupling by reducing the excitation of the DM resonance (~700Hz). On bright stars, an improvement of a factor of 30 in the flux injection into the VINCI fibers was measured. Following these tests a successful observation of the active nucleus of NGC 1068 was performed leading to a visibility of 40.4±5.4% on an average baseline of 45.84 m. The K magnitude in the 60 mas central source is 9.2±0.4 . The results already put some interesting constraints on the inner torus and central engine of the nucleus of NGC 1068 but mostly show that the combination MACAO-VLTI and VINCI opens the realm of extragalactic astronomy to interferometry.
Advancements in Adaptive Optics, 2004
We report on observations with MACAO-VLTI to feed the VLT Interferometer in November 2003. The purpose of this observing run was to optimize the feed to the VLTI by varying certain parameters of the curvature AO system and of the interferometer instrument VINCI. All along the main concern about this instrument combination was the differential piston introduced by 2 independent AO systems. A special so-called "piston removal algorithm" has been developed especially for this purpose. Each DM Influence Function is carefully characterized and a pure piston mode is defined to compensate piston over the pupil produced by a given voltage set. Piston is reduced by ~20 using this algorithm. It was found that decreasing the system main gain, while reducing strehl ratio, also reduces high frequency vibrations on the DM and therefore OPD variations. A control frequency of 420 Hz instead of the nominal 350 Hz was found to improve substantially the coupling by reducing the excitation of the DM resonance (~700Hz). On bright stars, an improvement of a factor of 30 in the flux injection into the VINCI fibers was measured. Following these tests a successful observation of the active nucleus of NGC 1068 was performed leading to a visibility of 40.4±5.4% on an average baseline of 45.84 m. The K magnitude in the 60 mas central source is 9.2±0.4 . The results already put some interesting constraints on the inner torus and central engine of the nucleus of NGC 1068 but mostly show that the combination MACAO-VLTI and VINCI opens the realm of extragalactic astronomy to interferometry.
Eso Astrophysics Symposia, 2008
The performance of interferometric instruments is strongly linked to the quality of piston stabilization. Next generation VLTI instruments plan to use 4 to 8 beams simultaneously. In the current VLTI implementation, the maximum number of beams that can be phased using FINITO and PRIMA/FSU simultaneously is 5. Therefore, a new fringe sensor is required for the VLTI.
2017
With the arrival of the second generation instrument GRAVITY, the Very Large Telescope Interferometer (VLTI) has entered a new era of optical interferometry. This instrument pushes the limits of accuracy and sensitivity by orders of magnitude. GRAVITY has achieved phase-referenced imaging at approximately milliarcsecond (mas) resolution and down to ~ 100-microarcsecond astrometry on objects that are several hundred times fainter than previously observable. The cutting-edge design presented in Eisenhauer et al. (2011) has become reality. This article sketches out the basic principles of the instrument design and illustrates its performance with key science results obtained during commissioning: phase-tracking on stars with K ~ 10 mag, phase-referenced interferometry of objects fainter than K ≳ 17 mag, minute-long coherent integrations, a visibility accuracy of better than 0.25 %, and spectro-differential phase and closure phase accuracy better than 0.5 degrees, corresponding to a dif...
Interferometry for Optical Astronomy II, 2003
The VLT interferometer has been operating since the time of first fringes in March 2001 with a pair of 40 cm diameter siderostats at baselines of 16 and 66m and a pair of 8m diameter telescopes (UT1 and UT3) with a baseline of 102m using the test camera VINCI operating in the K band. A fair fraction of its commissioning time has been devoted to observing a number of objects of scientific interest around the southern sky bright enough to allow high precision visibilities to be obtained on a routine basis. A large number of stellar sources with correlated magnitudes brighter than K~6 and K~3 with the 8m and 40cm telescopes respectively have been observed over this time period with limited u,v plane coverage. In this paper, the most interesting results on sources never observed before at these spatial resolutions and on known sources for which the VLTI data allow the establishment of tighter constraints on theoretical models will be reviewed.
2003
The Osservatorio Astronomico di Torino is developing a Fringe Sensor Unit (FSU) for VLTI, in collaboration with ESO. The requirements for interferometric observation at VLTI are reviewed, describing the function of an FSU and its interaction with the instrument complement. The cases analysed are FINITO and the PRIMA FSU. Their basic operating assumptions are described, deducing performance parameters as a function of the magnitude. Specifications for fringe tracking at LBT are deduced by comparison with the VLTI case and from general scientific requirements.
Optical and Infrared Interferometry, 2008
The current results of our ongoing Galactic Center (GC) observations with optical long baseline interferometry (OLB-IF) are presented. We achieved first IR-IF fringes in both available IR science regimes of the VLTI (MIDI: 10 µm) and (AMBER: 2 µm), demonstrating the new capabilities provided by large aperture telescope arrays to the Galactic center research. We show that the highest angular resolution only available through interferometric techniques is necessary to observe the GC ISM production in the making and distinguish individual sources from its dusty surroundings. An overview over the currently available IF-technology is given, biased towards the GC science case. The feasibility of phase-referencing to the supergiant GCIRS 7, located only 5 away from SgrA*, to increase the sensitivity and spectral resolution of the observations, is discussed, and supported by the first real data. The presentation will conclude with an outlook to the near future about how the upcoming astrometric and off-axis phase-referencing capabilities of the Keck and VLT Interferometers, nicknamed ASTRA and PRIMA, will greatly extend the currently existing capabilities to observe astrophysical phenomena in the Galactic center at the borderline to General relativity in a yet uninvestigated regime. Telephone: 1 808 881 3543 * VLT Interferometer: http://www.eso.org/projects/vlti/, in this article we consider the array of 8m-UT's as VLTI, since currently the VLTI-AT's are not sensitive enough for GC observations. † http://planetquest.jpl.nasa.gov/Keck/keck index.cfm
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.