Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009
Magnetoencephalography (MEG) offers a unique way to non-invasively monitor the neural activity in the human brain. MEG is based on measuring the very weak magnetic fields generated by the electric currents in the active neurons. Such measurements allow, with certain limitations, estimating the underlying current distribution and thus the locations and time courses of the neural generators with an excellent temporal resolution.
Methods in Molecular Biology, 2009
Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.
The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 2006
Magnetoencephalography (MEG) is a noninvasive neuroimaging method for detecting, analyzing, and interpreting the magnetic field generated by the electrical activity in the brain. Modern hardware can capture the MEG signal at hundreds of points around the head in a snapshot lasting only a fraction of a millisecond. The sensitivity of modern hardware is high enough to permit the extraction of a clean signal generated by the brain well above the noise level of the MEG hardware. It is possible to identify signatures of superficial and often deep generators in the raw MEG signal, even in snapshots of data. In a more quantitative way, tomographic images of the electrical current density in the brain can be extracted from each snapshot of MEG signal, providing a direct correlate of coherent collective neuronal activity. A number of recent studies have scrutinized brain function in the new spatiotemporal window that real-time tomographic analysis of MEG signals has opened. The results have ...
Organizational Research Methods, 2016
Magnetoencephalography (MEG) is a method to study electrical activity in the human brain by recording the neuromagnetic field outside the head. MEG, like electroencephalography (EEG), provides an excellent, millisecond-scale time resolution, and allows the estimation of the spatial distribution of the underlying activity, in favorable cases with a localization accuracy of a few millimeters. To detect the weak neuromagnetic signals, superconducting sensors, magnetically shielded rooms, and advanced signal processing techniques are used. The analysis and interpretation of MEG data typically involves comparisons between subject groups and experimental conditions using various spatial, temporal, and spectral measures of cortical activity and connectivity. The application of MEG to cognitive neuroscience studies is illustrated with studies of spoken language processing in subjects with normal and impaired reading ability. The mapping of spatiotemporal patterns of activity within networks...
Trends in Neurosciences, 1994
Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activ@ with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brainimaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects qf brain activi& during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by E E G, magnetoencephalography holds great promise as a tool for revealing informationprocessing sequences of the human brain.
Brain Sciences
Magnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders. In this review, we have investigated potential MEG applications for analysing brain disorders. The signal-to-noise ratio (SNRMEG = 2.2 db, SNREEG < 1 db) and spatial resolution (SRMEG = 2–3 mm, SREEG = 7–10 mm) is higher for MEG than EEG, thus MEG potentially facilitates accurate monitoring of cortical activity. We found that the direct electrophysiological MEG signals reflected the physiological status of neurological disorders and play a vital role in disease diagnosis. Single-channel connectivity, as well as brain network analysis, using MEG data acquired during resting state and a given task has been used for the diagnosis of neurological disorders such as epilepsy, Alzheimer’s, Parkinsonism, autism, and schizophrenia. The workflow of MEG and its potential applications in the diagnosis of disease and therapeutic planning are also discussed. We forecast that computer-aided algorithms will pl...
The main principles of magnetoencephalography (MEG) and the value of combined MEG and EEG are discussed. Established and some potential future clinical applications of MEG are reviewed. Practical guidelines for clinical MEG examinations are presented. a b s t r a c t Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation , stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations.
Proceedings of the National Academy of Sciences, 1996
Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.
International Congress Series, 2002
Magnetoencephalography (MEG) is a completely noninvasive method of functional imaging. MEG performs noninvasive functional imaging by recording the magnetic flux on the head surface associated with electrical currents in activated set of neurons, estimating the location of such sets, and projecting the location onto the MRI of the brain to identify and visualize the activated brain region. MEG has rapidly evolved in the last two decades due to the introduction of whole head systems and advances in computer technology. MEG is now the imaging modality of choice where a precise and high degree of localization is required. Ongoing studies show that it provides superior temporal and spatial resolution when compared to functional MRI. MEG is the only imaging technique that can reveal brain function over millisecond intervals. Magnetoencephalography was initially used to localize the primary sensory cortices, and depending on the nature of stimulus, this has been validated for visual, auditory or somatosensory areas. In order to localize brain networks involved during the engagement of cognitive tasks, both temporal and spatial resolution are critical. MEG is the only imaging technology capable of providing this information. We have successfully used magnetoencephalography to noninvasively localize brain areas involved with key language functions. These have been validated through the Wada procedure and with direct electrocortical stimulation. The utility of MEG in noninvasively localizing language function is reviewed. MEG also allows us to understand the differences in functional organization of the brain underlying the reading performances of dyslexic 0531-5131/02
Biological psychiatry, 1999
Magnetoencephalography (MEG) measures the extracranial magnetic fields produced by intraneuronal ionic current flow within appropriately oriented cortical pyramidal cells. Based upon superconducting quantum interference device technology operating at liquid helium temperatures (4 K), MEG offers excellent temporal and spatial resolution for selected sources, and complements information obtained from electroencephalograms and other functional imaging strategies. Current instrumentation permits recording up to several hundred channels simultaneously with head-shaped dewars, although the cost of such systems is high. The fact that magnetic fields fall off with the square of the distance from the source is both a benefit (when separating activity in the two hemispheres) and a limitation (when attempting to record deep sources). The lack of skin contact facilitates using MEG to record direct current and very high frequency (Ͼ600 Hz) brain activity. The clinical utility of MEG includes presurgical mapping of sensory cortical areas and localization of epileptiform abnormalities, and localization of areas of brain hypoperfusion in stroke patients. MEG studies in psychiatric disorders have contributed materially to improved understanding of anomalous brain lateralization in the psychoses, have suggested that P50 abnormalities may reflect altered gamma band activity, and have provided evidence of hemisphere-specific abnormalities of short-term auditory memory function. Biol Psychiatry 1999;45:1553-1563
Functional Brain Imaging, 1995
This chapter focuses on magnetoencephalography (MEG) used in brain imaging and its use in localizing the brain sources of externally recorded spontaneous activity and stimulus and task-induced activation. The chapter first describes the instruments used for recording the magnetoencephalographic signals and the neurogenesis of these signals. It then considers proposed solutions for the "inverse" problem and describes approaches for MEG source estimation, including a method that specifies only one or many equivalent current dipoles. It also explains the signal source-localizing technique known as beamforming and concluding with a discussion of practical issues in MEG/ MSI, with emphasis on those arising in clinical applications of the method.
Functional Neurology, 2014
To progress toward understanding of the mechanisms underlying the functional organization of the human brain, either a bottom-up or a top-down approach may be adopted. The former starts from the study of the detailed functioning of a small number of neuronal assemblies, while the latter tries to decode brain functioning by considering the brain as a whole. This review discusses the top-down approach and the use of magnetoencephalography (MEG) to describe global brain properties. The main idea behind this approach is that the concurrence of several areas is required for the brain to instantiate a specific behavior/functioning. A central issue is therefore the study of brain functional connectivity and the concept of brain networks as ensembles of distant brain areas that preferentially exchange information. Importantly, the human brain is a dynamic device, and MEG is ideally suited to investigate phenomena on behaviorally relevant timescales, also offering the possibility of capturing behaviorally-related brain connectivity dynamics.
Journal of Clinical Neurophysiology, 1991
is a new, noninvasive functional test equivalent to EEG. It has been used to localize the sources of evoked responses and interictal and ictal epileptiform discharges and to study patients with psychiatric illnesses, cerebrovascular accidents, and migraine. In epilepsy research, it is hoped that MEG will provide information similar to that yielded by depth or subdural electrode recording, or that the combination ofthese methods will provide more information than either one alone. The application of MEG appears to be widening, although it is not yet a routine clinical diagnostic tool. The utility ofMEG is limited by technological problems, but new and more efficient systems are becoming available. Within several years, advances in the technology and understanding ofMEG may modify the course ofits application.
Epilepsy & Behavior, 2004
Magnetoencephalography (MEG) is a relatively novel noninvasive technique, with a much shorter history than EEG, that conveys neurophysiological information complementary to that provided by EEG, with high temporal and spatial resolution. Despite its a priori, highly competitive profile, the role of MEG in the clinical setting is still controversial. We briefly review the major obstacles MEG faces in becoming a routine clinical test and the different strategies needed to bypass them. The high cost and complexity associated with MEG equipment are powerful hindrances to wide acceptance of this relatively new technique in clinical practice. The most straightforward advantage is based on the relative facility of MEG recordings in the process of source localization, which also carries some degree of uncertainty, thus partly explaining why the development of clinical applications of MEG has been so slow. Obviously, a decrease in the cost and the elaboration of semiautomatic protocols that could reduce the complexity of the studies and favor the development of consensual strategies, as well as a major effort on the part of clinicians to identify clinical issues where MEG could be decisive, would be most welcome.
Brain Sciences
Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of...
Nature Communications, 2019
The hippocampus and amygdala are key brain structures of the medial temporal lobe, involved in cognitive and emotional processes as well as pathological states such as epilepsy. Despite their importance, it is still unclear whether their neural activity can be recorded noninvasively. Here, using simultaneous intracerebral and magnetoencephalography (MEG) recordings in patients with focal drug-resistant epilepsy, we demonstrate a direct contribution of amygdala and hippocampal activity to surface MEG recordings. In particular, a method of blind source separation, independent component analysis, enabled activity arising from large neocortical networks to be disentangled from that of deeper structures, whose amplitude at the surface was small but significant. This finding is highly relevant for our understanding of hippocampal and amygdala brain activity as it implies that their activity could potentially be measured non-invasively.
Magnetoencephalography (MEG) and electroencephalography (EEG) were the Cinderellas of neuroimaging. On the one hand they are endowed with unparallel temporal resolution, while on the other they are in theory unable to uniquely determine the generators, even when a complete and exact set of measurements is available. Yet, study after study from our laboratories and others demonstrate that with modern hardware and software a very accurate estimate for the generators can be derived, at least from the MEG data. In this work we first review briefly theoretical arguments and the methods of source reconstruction. We then list experimental evidence for localization accuracy of a few millimeters from real MEG data using magnetic field tomography and a recent phantom study where a number of these techniques have been compared. We then put in context the accepted view of the electrophysiological basis of the EEG and MEG signal generation, adding caveats that must be considered given our incomplete knowledge of the anatomy and electrophysiology. We finally present results for processing of facial information that link the localization measures derived from MEG to the fMRI data at one end and invasive electrophysiology at the other and put them in the proper neurophysiological context.
Physica Scripta, 1989
Transfer of information from one neuron to another in the brain involves electric currents; when thousands of neighboring nerve cells act in concert they produce weak (about 100fT) magnetic fields that can be measured noninvasively outside the skull. The magnetic field detector used is the Superconducting Quantum Interference Device (SQUID).
Human Brain Mapping, 2005
We discuss the application of beamforming techniques to the field of magnetoencephalography (MEG). We argue that beamformers have given us an insight into the dynamics of oscillatory changes across the cortex not explored previously with traditional analysis techniques that rely on averaged evoked responses. We review several experiments that have used beamformers, with special emphasis on those in which the results have been compared to those observed in functional magnetic resonance imaging (fMRI) and on those studying induced phenomena. We suggest that the success of the beamformer technique, despite the assumption that there are no linear interactions between the mesoscopic local field potentials across distinct cortical areas, may tell us something of the balance between functional integration and segregation in the human brain. What is more, MEG beamformer analysis facilitates the study of these complex interactions within cortical networks that are involved in both sensory-motor and cognitive processes. Hum. Brain Mapp 25:199–211, 2005. © 2005 Wiley-Liss, Inc.
Computer Methods and Programs in Biomedicine, 1994
Magnetoencephalography (MEG) non-invasively infers the distribution of electric currents in the brain by measuring the magnetic fields they induce. Its superb spatial and temporal resolution provides a solid basis for the Tunctional imaging' of the brain provided it is integrated with other brain imaging techniques. MAGNOBRAIN is an applied research project that developed tools to integrate MEG with MRI and EEG. These include: (1) software for MEG oriented MRI feature extraction: (2) the Brain Data Base (BDB) which is a reference library of information on the brain used for more realistic and biologically meaningful functional localisations through MEG and EEG: and (3) a database of normative data (age and sex matched) for the interpretation of MEG. It is expected that these tools will evolve into a medical informatics environment that will aid the planning of neurosurgical operations as well as contribute to the exploration of mental function including the study of perception and cognition,