Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Microwave-accelerated proteolysis using acetic acid has been shown to occur specifically on either or both sides of aspartate residues. This chemical cleavage is applied to the yeast ribosome proteome to evaluate its suitability for incorporation into high-throughput automated workflows. Peptide product mixtures were analyzed using either an HPLC-ESI-LTQ-Orbitrap or an HPLC-MALDI-TOF 2 . The peptides were readily identified, using MASCOT with a modified enzyme rule, and provided information about 73% of the proteome. Implications are considered of the extended length and the presence of multiple basic residues in these peptides.
Journal of Proteome Research, 2008
Microwave-accelerated proteolysis using acetic acid has been shown to occur specifically on either or both sides of aspartic acid residues. This chemical cleavage has been applied to ovalbumin and several model peptides to test the effect on some of the more common post-translational modifications. No oxidation of methionine or cysteine was observed; however, hydrolysis of phosphate groups proceeds at a detectable rate. Acid cleavage was also extended to the yeast ribosome model proteome, where it provided information on 74% of that proteome. Aspartic acid occurs across the proteome with approximately half the frequency of the combined occurrence of the trypsin residues lysine and arginine, and implications of this are considered.
Mass Spectrometry Reviews, 2007
State-of-the-art proteomic analysis has recently undergone a rapid evolution; with more high-throughput analytical instrumentation and informatic tools available, sample preparation is becoming one of the rate-limiting steps in protein characterization workflows. Recently several protocols have appeared in the literature that employ microwave irradiation as a tool for the preparation of biological samples for subsequent mass spectrometric characterization. Techniques for microwave-assisted biocatalyzed reactions (including sample reduction and alkylation, enzymatic and chemical digestion, removal and analysis of posttranslational modifications and characterization of enzymes and protein-interaction sites) are described. This review summarizes the various approaches undertaken, instrumentation employed, and reduction in overall experimental time observed when microwave assistance is applied.
Rapid Communications in Mass Spectrometry, 2007
Proteomics, 2005
Two-dimensional electrophoresis (2-DE) combined with mass spectrometry has significantly improved the possibilities of large-scale identification of proteins. However, 2-DE is limited by its inability to speed up the in-gel digestion process. We have developed a new approach to speed up the protein identification process utilizing microwave technology. Proteins excised from gels are subjected to in-gel digestion with endoprotease trypsin by microwave irradiation, which rapidly produces peptide fragments. The peptide fragments were further analyzed by matrix-assisted laser desorption/ionization technique for protein identification. The efficacy of this technique for protein mapping was demonstrated by the mass spectral analyses of the peptide fragmentation of several proteins, including lysozyme, albumin, conalbumin, and ribonuclease A. The method reduced the required time for in-gel digestion of proteins from 16 hours to as little as five minutes. This new application of microwave technology to protein identification will be an important advancement in biotechnology and proteome research.
Journal of Proteome Research, 2008
Journal of Proteome Research, 2008
The non-enzymatic digestion of proteins by microwave D-cleavage is an effective technique for sitespecific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well documented that highly charged peptide ions generated by ESI are wellsuited for electron transfer dissociation (ETD), which produces c-and z-type fragment ions via gasphase ion/ion reactions. In this paper we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the non-enzymatic microwave D-cleavage technique is a rapid (< 6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.
Journal of Proteomics, 2011
Protein identification by mass spectrometry is mainly based on MS/MS spectra and the accuracy of molecular mass determination. However, the high complexity and dynamic ranges for any species of proteomic samples, surpass the separation capacity and detection power of the most advanced multidimensional liquid chromatographs and mass spectrometers. Only a tiny portion of signals is selected for MS/MS experiments and a still considerable number of them do not provide reliable peptide identification. In this article, an in silico analysis for a novel methodology of peptides and proteins identification is described. The approach is based on mass accuracy, isoelectric point (pI), retention time (t R ) and N-terminal amino acid determination as protein identification criteria regardless of high quality MS/MS spectra. When the methodology was combined with the selective isolation methods, the number of unique peptides and identified proteins increases. Finally, to demonstrate the feasibility of the methodology, an OFFGEL-LC-MS/MS experiment was also implemented. We compared the more reliable peptide identified with MS/MS information, and peptide identified with three experimental features (pI, t R , molecular mass). Also, two theoretical assumptions from MS/MS identification (selective isolation of peptides and N-terminal amino acid) were analyzed. Our results show that using the information provided by these features and selective isolation methods we could found the 93% of the high confidence protein identified by MS/MS with false-positive rate lower than 5%.
Rapid Communications in Mass Spectrometry, 2010
Journal of the American Society for Mass Spectrometry, 2007
An approach that combines limited proteolysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been developed to probe protease-accessible sites of ribosomal proteins from intact ribosomes. Escherichia coli and Thermus thermophilus 70S ribosomes were subjected to limited proteolysis using different proteases under strictly controlled conditions. Intact ribosomal proteins and large proteolytic peptides were recovered and directly analyzed by MALDI-MS, which allows for the determination of proteins that are resistant to proteolytic digestion by accurate measurement of molecular weights. Larger proteolytic peptides can be directly identified by the combination of measured mass, enzyme specificity, and protein database searching. Sucrose density gradient centrifugation revealed that the majority of the 70S ribosome dissociates into intact 30S and 50S subunits after 120 min of limited proteolysis. Thus, examination of ribosome populations within the first 30 to 60 min of incubation provides insight into 70S structural features. Results from E. coli and T. thermophilus revealed that a significantly larger fraction of 50S ribosomal proteins have similar limited proteolysis behavior than the 30S ribosomal proteins of these two organisms. The data obtained by this approach correlate with information available from the high-resolution crystal structures of both organisms. This new approach will be applicable to investigations of other large ribonucleoprotein complexes, is readily extendable to ribosomes from other organisms, and can facilitate additional structural studies on ribosome assembly intermediates. (J Am
Analytica chimica acta, 2016
An integrated sample preparation method, termed "imFASP", which combined in-situ filter-aided sample pretreatment and microwave-assisted trypsin digestion, was developed for preparation of microgram and even nanogram amounts of complex protein samples with high efficiency in 1 h. For imFASP method, proteins dissolved in 8 M urea were loaded onto a filter device with molecular weight cut off (MWCO) as 10 kDa, followed by in-situ protein preconcentration, denaturation, reduction, alkylation, and microwave-assisted tryptic digestion. Compared with traditional in-solution sample preparation method, imFASP method generated more protein and peptide identifications (IDs) from preparation of 45 μg Escherichia coli protein sample due to the higher efficiency, and the sample preparation throughput was significantly improved by 14 times (1 h vs. 15 h). More importantly, when the starting amounts of E. coli cell lysate decreased to nanogram level (50-500 ng), the protein and peptide i...
Mass Spectrometry Letters, 2016
Various efforts have been developed to improve sample preparation steps, which strongly depend on hands-on processes for accurate and sensitive quantitative proteome analysis. In this study, we carried out heating the sample prior to trypsin digestion using an instrument to improve the tryptic digestion process. The heat shock generated by the system efficiently denatured proteins in the sample and increased the reproducibility in quantitative proteomics based on peptide abundance measurements. To demonstrate the effectiveness of the protocol, three cell lines (A human lung cancer cell line (A549), a human embryonic kidney cell line (HEK293T), and a human colorectal cancer cell line (HCT-116)) were selected and the effect of heat shock was compared to that of normal tryptic digestion processes. The tryptic digests were desalted and analysed by LC-MS/MS, the results showed 57 and 36% increase in the number of identified unique peptides and proteins, respectively, than conventional digestion. Heat shock treated samples showed higher numbers of shorter peptides and peptides with low inter-sample variation among triplicate runs. Quantitative LC-MS/MS analysis of heat shock treated sample yielded peptides with smaller relative error percentage for the triplicate run when the peak areas were compared. Exposure of heat-shock to proteomic samples prior to proteolysis in conventional digestion process can increase the digestion efficiency of trypsin resulting in production of increased number of peptides eventually leading to higher proteome coverage.
ELECTROPHORESIS, 2001
The identification of individual protein species within an organism©s proteome has been optimised by increasing the information produced from mass spectral analysis through the chemical derivatisation of tryptic peptides and the development of new software tools. Peptide fragments are subjected to two forms of derivatisation. First, lysine residues are converted to homoarginine moieties by guanidination. This procedure has two advantages, first, it usually identifies the C-terminal amino acid of the tryptic peptide and also greatly increases the total information content of the mass spectrum by improving the signal response of C-terminal lysine fragments. Second, an Edman-type phenylthiocarbamoyl (PTC) modification is carried out on the N-terminal amino acid. The renders the first peptide bond highly susceptible to cleavage during mass spectrometry (MS) analysis and consequently allows the ready identification of the N-terminal residue. The utility of the procedure has been demonstrated by developing novel bioinformatic tools to exploit the additional mass spectral data in the identification of proteome proteins from the yeast Saccharomyces cerevisiae. With this combination of novel chemistry and bioinformatics, it should be possible to identify unambiguously any yeast protein spot or band from either two-dimensional or one-dimensional electropheretograms.
Nature Methods, 2008
The currently most widely used mass spectrometry-based proteomic methods sample the available proteome in a quasi-random manner 1 . In each analysis of a sample only a subset of the proteins it contains are identified and quantified, and repeated analyses of the same sample measure only partly overlapping segments of the proteome. This precludes the generation of consistent and reproducible datasets when the effects of different perturbations on a proteome are studied, as is the case of dosage series or time courses. Complete, quantitatively accurate data sets are however of critical importance for many studies, especially those aimed at generating data to support the mathematical modeling of a biological process, a hallmark of the emerging field of systems biology. An additional challenge in comprehensive proteomic analyses is the detection of low abundant proteins 2, 3 . These constraints strongly limit the feasibility of quantitatively and consistently measuring defined sets of target proteins -such as functionally related proteins, proteins constituting signaling networks, or proteins involved in a specific metabolic cycle -across different samples. To overcome these limitations we recently proposed a targeted proteomic strategy 2, 4 , which exploits the power of a mass spectrometry (MS) technique called selected reaction monitoring (SRM). The essence of this approach is the generation of specific, quantitative mass spectrometric assays for each member of a set of proteins and their subsequent application to multiple biological samples. The approach requires the generation of a list of proteins of interest for which peptides are selected that unambiguously represent these proteins and are preferentially detectable by MS. We have termed such peptides proteotypic peptides (PTP's) 5 . Next, for each PTP, precursor ion/fragment ion relationships are established, that specifically identify the respective PTP. These consists of pairs of massto-charge (m/z) values that are selected with the first and last analyzer of a triple quadrupole (QQQ)-like mass spectrometer to isolate the targeted precursor ion and corresponding, diagnostic fragment ion(s), respectively. The detector acts as a counting device for analytes matching the defined relationship(s) and returns a signal intensity over the chromatographic elution time. These relationships, commonly termed (SRM or MRM a ) transitions, therefore effectively constitute mass spectrometric assays that identify a specific peptide and, by inference, the corresponding protein in a complex protein digest. These assays are accurately *Corresponding author: aebersold@imsb.biol.ethz.ch; Phone: +41 44 633 31 70; Fax: +41 44 633 10 51. # Authors equally contributing a Multiple SRM transitions can be measured within the same experiment by rapidly toggling between the different transitions. The term multiple reaction monitoring (MRM) is frequently used to describe such parallel acquisition of SRM transitions, but might be in the future deprecated by the IUPAC nomenclature (Murray et al., IUPAC Current Provisional Recommendations, August 2006, prepared for publication).
2007
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using 4600,000 peptide identifications generated by four proteomic platforms, we empirically identified 416,000 proteotypic peptides for 4,030 distinct yeast proteins. Characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with 485% cumulative accuracy. Possible applications of proteotypic peptides include validation of protein identifications, absolute quantification of proteins, annotation of coding sequences in genomes, and characterization of the physical principles governing key elements of mass spectrometric workflows (e.g., digestion, chromatography, ionization and fragmentation).
Proteomics, 2006
We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.
2006
Genome Biology 2006, 7:R106 comment reviews reports deposited research refereed research interactions information
Molecular & Cellular Proteomics, 2007
The analysis by liquid chromatography coupled to tandem mass spectrometry of complex peptide mixtures, generated by proteolysis of protein samples, is the main proteomics method used today. The approach is based on the assumption that each protein present in a sample reproducibly and predictably generates a relatively small number of peptides that can be identified by mass spectrometry. In this study this assumption was examined by a targeted peptide sequencing strategy using inclusion lists to trigger peptide fragmentation attempts. It was found that the number of peptides observed from a single protein is at least one order of magnitude greater than previously assumed. This unexpected complexity of proteomics samples implies substantial technical challenges, explains some perplexing results in the proteomics literature, and prompts the need for developing alternative experimental strategies for the rapid and comprehensive analysis of proteomes. Molecular & Cellular Proteomics 6: 1589 -1598, 2007.
2010
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.
As a test case for optimizing how to perform proteomics experiments, we chose a yeast model system in which the UPF1 gene, a protein involved in nonsense-mediated mRNA decay, was knocked out by homologous recombination. The results from five complete isotope-coded affinity tag (ICAT) experiments were combined, two using matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) and three using electrospray MS/MS. We sought to assess the reproducibility of peptide identification and to develop an informatics structure that characterizes the identification process as well as possible, especially with regard to tenuous identifications. The cleavable form of the ICAT reagent system (Gygi et al. (1999) Nat. Biotechnol. 17, 994 -999) was used for quantification. Most proteins did not change significantly in expression as a consequence of the upf1 knockout. As expected, the Upf1 protein itself was down-regulated, and there were reproducible increases in expression of proteins involved in arginine biosynthesis. Initially, it seemed that about 10% of the proteins had changed in expression level, but after more thorough examination of the data it turned out that most of these apparent changes could be explained by artifacts of quantification caused by overlapping heavy/light pairs. About 700 proteins altogether were identified with high confidence and quantified. Many peptides with chemical modifications were identified, as well as peptides with noncanonical tryptic termini. Nearly all of these modified peptides corresponded to the most abundant yeast proteins, and some would otherwise have been attributed to "single hit" proteins at low confidence. To improve our confidence in the identifications, in MALDI experiments, the parent masses for the peptides were calibrated against nearby components. In addition, five novel parameters reflecting different aspects of identification were collected for each spectrum in addition to the Mascot score that was originally used. The interrelationship between these scoring parameters and confidence in protein identification is discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.