Academia.eduAcademia.edu

The Noether Principle of Optimal Control

Abstract

Page 1. The Noether Principle of Optimal Control Delfim FM Torres [email protected] Department of Mathematics University of Aveiro 3810–193 Aveiro, Portugal http://www.mat.ua.pt/delfim Page 2.

Key takeaways

  • If (x(·), u(·)) is a minimizer of (P ), then ∃ (ψ 0 , ψ(·)) = 0, ψ 0 ≤ 0, ψ(·) ∈ W n 1,1 , such that the quadruple (x(·), u(·), ψ 0 , ψ(·)) is a (Pontryagin) extremal : it satisfies the Hamiltonian systemẋ = ∂H ∂ψ ,ψ = − ∂H ∂x The maximality condition
  • A function C(t, x, u, ψ 0 , ψ) constant along every extremal,
  • Hamiltonian system:ẋ = u,ψ = −ψ 0 ∂L ∂x ; maximality condition: ψ = −ψ 0 ∂L ∂u ➜ No abnormal extremals exist for the fundamental problem CV ➜ If x(·) is a minimizer, it satisfies the Euler-Lagrange equations :
  • Using (5) to simplify the expression ψ 0 (3) + ψ(t) · (4) one getṡ Invariance under h s (t, x) = x + st (problem autonomous but the state transformation h s is depending also on t) up to Φ s (t, x) = s 2 t + 2sx (nonlinear gauge term) with u s (t) = u(t) + s:
  • Let (x(·), u(·), ψ 0 , ψ(·)) be a Pontryagin extremal of (P ).