Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
59 pages
1 file
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are also surveyed, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation. The solitons are considered in one, two, and three dimensions. Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions can be drawn. In particular, a novel fundamental property of one-dimensional solitons, which does not occur in the absence of NLs, is a finite threshold value of the soliton norm, necessary for their existence. In multidimensional settings, the stability of solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for theoretical and experimental studies alike. In both the one-dimensional and two-dimensional cases, the mechanism that creates solitons in NLs in principle is different from its counterpart in linear lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear lattices.
Reviews of Modern Physics, 2011
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions can be drawn. In particular, a novel fundamental property of 1D solitons, which does not occur in the absence of NLs, is a finite threshold value of the soliton norm, necessary for their existence. In multidimensional settings, the stability of solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for the theoretical and experimental studies alike. In both the 1D and 2D cases, the mechanism which creates solitons in NLs is principally different from its counterpart in linear lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear lattices.
Physical Review A, 2010
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
Physical Review A, 2010
We study ordinary solitons and gap solitons (GSs) in the framework of the onedimensional Gross-Pitaevskii equation (GPE) with a combination of linear and nonlinear lattice potentials. The main points of the analysis are effects of (in)commensurability between the lattices, development of analytical methods, viz., the variational approximation (VA) for narrow ordinary solitons, and various forms of the averaging method for broad solitons of both types, and also the study of mobility of the solitons. Under the direct commensurability (equal periods of the lattices, L lin = L nonlin ), the family of ordinary solitons is similar to its counterpart in the GPE without external potentials. In the case of the subharmonic commensurability, with L lin = (1/2)L nonlin , or incommensurability, there is an existence threshold for the ordinary solitons, and the scaling relation between their amplitude and width is different from that in the absence of the potentials. GS families demonstrate a bistability, unless the direct commensurability takes place. Specific scaling relations are found for them too. Ordinary solitons can be readily set in motion by kicking. GSs are mobile too, featuring inelastic collisions. The analytical approximations are shown to be quite accurate, predicting correct scaling relations for the soliton families in different cases. The stability of the ordinary solitons is fully determined by the VK (Vakhitov-Kolokolov) criterion, i.e., a negative slope in the dependence between the solitons's chemical potential µ and norm N . The stability of GS families obeys an inverted ("anti-VK") criterion, dµ/dN > 0, which is explained by the approximation based on the averaging method. The present system provides for a unique possibility to check the anti-VK criterion, as µ(N ) dependences for GSs feature turning points, except for the case of the direct commensurability.
Optics Letters, 2009
We address the existence and stability of two-dimensional solitons in optical or matter-wave media, which are supported by purely nonlinear lattices in the form of a periodic array of cylinders with self-focusing nonlinearity, embedded into a linear material. We show that such lattices can stabilize two-dimensional solitons against collapse. We also found that stable multipoles and vortex solitons are also supported by nonlinear lattices, provided that the nonlinearity exhibits saturation.
Studies in Applied Mathematics, 2005
We consider a model of Bose-Einstein condensates which combines a stationary optical lattice (OL) and periodic change of the sign of the scattering length (SL) due to the Feshbach-resonance management. Ordinary solitons and ones of the gap type being possible, respectively, in the model with constant negative and positive SL, an issue of interest is to find solitons alternating, in the case of the low-frequency modulation, between shapes of both types, across the zero-SL point. We find such alternate solitons and identify their stability regions in the 2D and 1D models. Three types of the dynamical regimes are distinguished: stable, unstable, and semi-stable. In the latter case, the soliton sheds off a conspicuous part of its initial norm before relaxing to a stable regime. In the 2D case, the threshold (minimum number of atoms) necessary for the existence of the alternate solitons is essentially higher than its counterparts for the ordinary and gap solitons in the static model. In the 1D model, the alternate solitons are also found only above a certain threshold, while the static 1D models have no threshold. In the 1D case, stable antisymmetric alternate solitons are found too. Additionally, we consider a possibility to apply the variational approximation (VA) to the description of stationary gap solitons, in the case of constant positive SL. It predicts the solitons in the first finite bandgap very accurately, and does it reasonably well in the second gap too. In higher bands, the VA predicts a border between tightly and loosely bound solitons.
Optics Letters, 2009
We consider two-component solitons in a medium with a periodic modulation of the nonlinear coefficient. The modulation enables the existence of complex multihump vector states.
Springer Series in Optical Sciences, 2009
We present a review on wave propagation in nonlinear photonic lattices: arrays of optical waveguides made of nonlinear media. Such periodic structures provide an excellent environment for the direct experimental observations and theoretical studies of universal phenomena arising from the interplay between nonlinearity and Bloch periodicity. In particular, we review one-dimensional and two-dimensional lattice solitons, spatial gap solitons, and vortex lattice solitons.
Physical Review Letters, 2015
We study theoretically and experimentally the propagation of optical solitons in a lattice nonlinearity, a periodic pattern that both affects and is strongly affected by the wave. Observations are carried out using spatial photorefractive solitons in a volume microstructured crystal with a built-in oscillating low-frequency dielectric constant. The pattern causes an oscillating electro-optic response that induces a periodic optical nonlinearity. On-axis results in potassium-lithium-tantalate-niobate indicate the appearance of effective continuous saturated-Kerr solitons, where all spatial traces of the lattice vanish, independently of the ratio between beam width and lattice constant. Decoupling the lattice nonlinearity allows the detection of discrete delocalized and localized light distributions, demonstrating that the continuous solitons form out of the combined compensation of diffraction and of the underlying periodic volume pattern.
Journal of Physics B: Atomic, Molecular and Optical Physics, 2012
The existence and stability of three-dimensional (3D) solitons, in cross-combined linear and nonlinear optical lattices, are investigated. In particular, with a starting optical lattice (OL) configuration such that it is linear in the x-direction and nonlinear in the y-direction, we consider the z-direction either unconstrained (quasi-2D OL case) or with another linear OL (full 3D case). We perform this study both analytically and numerically: analytically by a variational approach based on a Gaussian ansatz for the soliton wavefunction and numerically by relaxation methods and direct integrations of the corresponding Gross-Pitaevskii equation. We conclude that, while 3D solitons in the quasi-2D OL case are always unstable, the addition of another linear OL in the z-direction allows us to stabilize 3D solitons both for attractive and repulsive mean interactions. From our results, we suggest the possible use of spatial modulations of the nonlinearity in one of the directions as a tool for the management of stable 3D solitons.
Nonlinear Dynamics, 2017
We develop stability analysis for matter-wave solitons in a two-dimensional (2D) Bose-Einstein condensate loaded in an optical lattice (OL), to which periodic time modulation is applied, in different forms. The stability is studied by dint of the variational approximation and systematic simulations. For solitons in the semi-infinite gap, well-defined stability patterns are produced under the action of the attractive nonlinearity, clearly exhibiting the presence of resonance frequencies. The analysis is reported for several time-modulation formats, including the case of in-phase modulations of both quasi-1D sublattices, which build the 2D square-shaped OL, and setups with asynchronous modulation of the sublattices. In particular, when the modulations of two sublattices are phase-shifted by δ = π/2, the stability map is not improved, as the originally well-structured stability pattern becomes fuzzy and the stability at high modulation frequencies is considerably reduced. Mixed results are obtained for anti-phase modulations of the sublattices (δ = π), where extended stability regions are found for low modulation frequencies, but for high frequencies the stability is weakened. The analysis is also performed in the case of the repulsive nonlinearity, for solitons in the first finite bandgap. It is concluded that, even though stability regions may be found, distinct stability boundaries for the gap solitons cannot be identified clearly. Finally, the stability is also explored for vortex solitons of both the "square-shaped" and "rhombic" types (i.e., off-and on-site-centered ones).
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Physica D: Nonlinear Phenomena, 2009