Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005, European Journal of Neuroscience
…
7 pages
1 file
Novel stimuli in all sensory modalities are highly effective in attracting and focusing attention. Stimulus-specific adaptation (SSA) and brain activity evoked by novel stimuli have been studied using population measures such as imaging and event-related potentials, but there have been few studies at the single-neuron level. In this study we compare SSA across different populations of neurons in the inferior colliculus (IC) of the rat and show that a subclass of neurons with rapid and pronounced SSA respond selectively to novel sounds. These neurons, located in the dorsal and external cortex of the IC, fail to respond to multiple repetitions of a sound but briefly recover their excitability when some stimulus parameter is changed. The finding of neurons that respond selectively to novel stimuli in the mammalian auditory midbrain suggests that they may contribute to a rapid subcortical pathway for directing attention and ⁄ or orienting responses to novel sounds.
The Journal of Neuroscience, 2012
The ability to detect unexpected sounds within the environment is an important function of the auditory system, as a rapid response may be required for the organism to survive. Previous studies found a decreased response to repetitive stimuli (standard), but an increased response to rare or less frequent sounds (deviant) in individual neurons in the inferior colliculus (IC) and at higher levels. This phenomenon, known as stimulus-specific adaptation (SSA) has been suggested to underpin change detection. Currently, it is not known how SSA varies within a single neuron receptive field, i.e., it is unclear whether SSA is a unique property of the neuron or a feature that is frequency and/or intensity dependent. In the present experiments, we used the common SSA index (CSI) to quantify and compare the degree of SSA under different stimulation conditions in the IC of the rat. We calculated the CSI at different intensities and frequencies for each individual IC neuron to map the neuronal C...
To identify sounds as novel, there must be some neural representation of commonly occurring sounds. Stimulus-specific adaptation (SSA) is a reduction in neural response to a repeated sound. Previous studies using an oddball stimulus paradigm have shown that SSA occurs at the cortex, but this study demonstrates that neurons in the inferior colliculus (IC) also show strong SSA using this paradigm. The majority (66%) of IC neurons showed some degree of SSA. Approximately 18% of neurons showed near-complete SSA. Neurons with SSA were found throughout the IC. Responses of IC neurons were reduced mainly during the onset component of the response, and latency was shorter in response to the oddball stimulus than to the standard. Neurons with near-complete SSA were broadly tuned to frequency, suggesting a high degree of convergence. Thus, some of the mechanisms that may underlie novelty detection and behavioral habituation to common sounds are already well developed at the midbrain.
Auditory neurons that exhibit stimulus-specific adaptation (SSA) decrease their response to common tones while retaining responsiveness to rare ones. We recorded single-unit responses from the inferior colliculus (IC) where SSA is known to occur and we explored for the first time SSA in the cochlear nucleus (CN) of rats. We assessed an important functional outcome of SSA, the extent to which frequency discriminability depends on sensory context. For this purpose, pure tones were presented in an oddball sequence as standard (high probability of occurrence) or deviant (low probability of occurrence) stimuli. To study frequency discriminability under different probability contexts, we varied the probability of occurrence and the frequency separation between tones. The neuronal sensitivity was estimated in terms of spike-count probability using signal detection theory. We reproduced the finding that many neurons in the IC exhibited SSA, but we did not observe significant SSA in our CN sample. We concluded that strong SSA is not a ubiquitous phenomenon in the CN. As predicted, frequency discriminability was enhanced in IC when stimuli were presented in an oddball context, and this enhancement was correlated with the degree of SSA shown by the neurons. In contrast, frequency discrimination by CN neurons was independent of stimulus context. Our results demonstrated that SSA is not widespread along the entire auditory pathway, and suggest that SSA increases frequency discriminability of single neurons beyond that expected from their tuning curves.
PLoS ONE, 2010
The specific adaptation of neuronal responses to a repeated stimulus (Stimulus-specific adaptation, SSA), which does not fully generalize to other stimuli, provides a mechanism for emphasizing rare and potentially interesting sensory events. Previous studies have demonstrated that neurons in the auditory cortex and inferior colliculus show SSA. However, the contribution of the medial geniculate body (MGB) and its main subdivisions to SSA and detection of rare sounds remains poorly characterized. We recorded from single neurons in the MGB of anaesthetized rats while presenting a sequence composed of a rare tone presented in the context of a common tone (oddball sequences). We demonstrate that a significant percentage of neurons in MGB adapt in a stimulus-specific manner. Neurons in the medial and dorsal subdivisions showed the strongest SSA, linking this property to the non-lemniscal pathway. Some neurons in the nonlemniscal regions showed strong SSA even under extreme testing conditions (e.g., a frequency interval of 0.14 octaves combined with a stimulus onset asynchrony of 2000 ms). Some of these neurons were able to discriminate between two very close frequencies (frequency interval of 0.057 octaves), revealing evidence of hyperacuity in neurons at a subcortical level. Thus, SSA is expressed strongly in the rat auditory thalamus and contribute significantly to auditory change detection.
2011
Stimulus-specific adaptation (SSA) is the reduction in the response to a common stimulus that does not generalize, or only partially generalizes, to other, rare stimuli. SSA has been proposed to be a correlate of 'deviance detection', an important computational task of sensory systems. SSA is ubiquitous in the auditory system: It is found both in cortex and in subcortical stations, and it has been demonstrated in many mammalian species as well as in birds. A number of models have been suggested in the literature to account for SSA in the auditory domain. In this review, the experimental literature is critically examined in relationship to these models. While current models can all account for auditory SSA to some degree, none is fully compatible with the available findings.
Journal of Neuroscience, 2011
The detection of novel and therefore potentially behavioral relevant stimuli is of fundamental importance for animals. In the auditory system, stimulus-specific adaptation (SSA) resulting in stronger responses to rare compared with frequent stimuli was proposed as such a novelty detection mechanism. SSA is a now well established phenomenon found at different levels along the mammalian auditory pathway. It depends on various stimulus features, such as deviant probability, and may be an essential mechanism underlying perception of changes in sound statistics. We recorded neuronal responses from the ventral part of the medial geniculate body (vMGB) in Mongolian gerbils to determine details of the adaptation process that might indicate underlying neuronal mechanisms. Neurons in the vMGB exhibited a median spike rate change of 15.4% attributable to a fast habituation to the frequently presented standard stimulus. Accordingly, the main habituation effect could also be induced by the repetition of a few uniform tonal stimuli. The degree of habituation was frequency-specific, and comparison across simultaneously recorded units indicated that adaptation effects were apparently topographically organized. At the population level, stronger habituation effects were on average associated with the border regions of the frequency response areas. Finally, the pharmacological inactivation of the auditory cortex demonstrated that SSA in the vMGB is mainly regulated by the corticofugal system. Hence, these results indicate a more general function of SSA in the processing and analysis of auditory information than the term novelty detection suggests.
Frontiers in Neural Circuits
The ability to detect unexpected or deviant events in natural scenes is critical for survival. In the auditory system, neurons from the midbrain to cortex adapt quickly to repeated stimuli but this adaptation does not fully generalize to other rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). Most studies of SSA were conducted with pure tones of different frequencies, and it is by now well-established that SSA to tone frequency is strong and robust in auditory cortex. Here we tested SSA in the auditory cortex to the ear of stimulation using broadband noise. We show that cortical neurons adapt specifically to the ear of stimulation, and that the contrast between the responses to stimulation of the same ear when rare and when common depends on the binaural interaction class of the neurons.
eLife, 2020
The extensive feedback from the auditory cortex (AC) to the inferior colliculus (IC) supports critical aspects of auditory behavior but has not been extensively characterized. Previous studies demonstrated that activity in IC is altered by focal electrical stimulation and pharmacological inactivation of AC, but these methods lack the ability to selectively manipulate projection neurons. We measured the effects of selective optogenetic modulation of corticocollicular feedback projections on IC sound responses in mice. Activation of feedback increased spontaneous activity and decreased stimulus selectivity in IC, whereas suppression had no effect. To further understand how microcircuits in AC may control collicular activity, we optogenetically modulated the activity of different cortical neuronal subtypes, specifically parvalbumin-positive (PV) and somatostatin-positive (SST) inhibitory interneurons. We found that modulating the activity of either type of interneuron did not affect IC sound-evoked activity. Combined, our results identify that activation of excitatory projections, but not inhibition-driven changes in cortical activity, affects collicular sound responses.
Proceedings of the National Academy of Sciences of the United States of America, 2016
This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vic...
Scientific Reports, 2015
In an ever changing auditory scene, change detection is an ongoing task performed by the auditory brain. Neurons in the midbrain and auditory cortex that exhibit stimulus-specific adaptation (SSA) may contribute to this process. Those neurons adapt to frequent sounds while retaining their excitability to rare sounds. Here, we test whether neurons exhibiting SSA and those without are part of the same networks in the inferior colliculus (IC). We recorded the responses to frequent and rare sounds and then marked the sites of these neurons with a retrograde tracer to correlate the source of projections with the physiological response. SSA neurons were confined to the non-lemniscal subdivisions and exhibited broad receptive fields, while the non-SSA were confined to the central nucleus and displayed narrow receptive fields. SSA neurons receive strong inputs from auditory cortical areas and very poor or even absent projections from the brainstem nuclei. On the contrary, the major sources ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Frontiers in Neural Circuits, 2013
Journal of Neurophysiology, 2013
Hearing Research, 2007
European Journal of Neuroscience, 2002
The Journal of Neuroscience, 1992
The journal of …, 2004
Journal of Neurophysiology, 2008
Journal of Neuroscience, 2009
The Journal of Neuroscience, 2021
The European journal of neuroscience, 2014
Journal of Neurophysiology, 2007
Biological Cybernetics, 2014
Brain Topogr., 2014
The Journal of Physiological Sciences, 2015