Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009, Advanced Concepts for Intelligent …
…
11 pages
1 file
This paper addresses the necessity for effective object detection techniques that can localize multiple instances of a single category within a static image, with potential applications across various fields including biomedical imaging and video surveillance. It critiques existing methods, particularly those reliant on sliding window approaches and template matching, which often fall short in varied scenarios without extensive training datasets. The proposed solution includes a novel algorithm that utilizes robust image patch analysis and sparse feature analysis, significantly improving detection accuracy and efficiency as demonstrated through concrete experimental results.
2008
This paper deals with real-time visual detection, by mono-camera, of objects categories such as cars and pedestrians. We report on improvements that can be obtained for this task, in complex applications such as advanced driving assistance systems, by using new visual features as adaBoost weak classifiers. These new features, the "connected controlpoints" have recently been shown to give very good results on real-time visual rear car detection. We here report on results obtained by applying these new features to a public lateral car images dataset, and a public pedestrian images database. We show that our new features consistently outperform previously published results on these databases, while still operating fast enough for real-time pedestrians and vehicles detection.
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers[6]. The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.
2001
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers . The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.
Computing Research Repository, 2009
This paper shows how to improve the real-time object detection in complex robotics applications, by exploring new visual features as AdaBoost weak classifiers. These new features are symmetric Haar filters (enforcing global horizontal and vertical symmetry) and N-connexity control points. Experimental evaluation on a car database show that the latter appear to provide the best results for the vehicle-detection problem.
Computing Research Repository, 2009
We present promising results for real-time vehicle visual detection, obtained with adaBoost using new original "keypoints presence features". These weak-classifiers produce a boolean response based on presence or absence in the tested image of a "keypoint" (~ a SURF interest point) with a descriptor sufficiently similar (i.e. within a given distance) to a reference descriptor characterizing the feature. A first experiment was conducted on a public image dataset containing lateral-viewed cars, yielding 95% recall with 95% precision on test set. Moreover, analysis of the positions of adaBoost-selected keypoints show that they correspond to a specific part of the object category (such as "wheel" or "side skirt") and thus have a "semantic" meaning.
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers . The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.
2007
Being aware of other vehicles on the road ahead is a key information to help driver assistance systems to increase driver’s safety. This paper addresses this problem, proposing a system to detect vehicles from the images provided by a single camera mounted in a mobile platform. A classifier–based approach is presented, based on the evaluation of a cascade of classifiers (COC) at different scanned image regions. The Adaboost algorithm is used to determine the COC from training sets. Two proposals are done to reduce the computation needed for the detection scheme used: a lazy evaluation of the COC, and the customization of the COC by a wrapping process. The benefits of these two proposals are quantified in terms of the average number of image features required to classify an image region, achieving a reduction of the 58% on this concept, while scarcely penalizing the detection accuracy of the system.
2015
Object detection, such as face detection using supervised learning, often requires extensive training for the computer, which results in high execution times. If the trained system needs retraining in order to accommodate a missed detection, waiting several hours or days before the system is ready may be unacceptable in practical implementations. This dissertation presents a generalized object detection framework vii TABLE OF CONTENTS
Procedings of the British Machine Vision Conference 2008, 2008
We propose a novel multi-class object detector, that optimizes the detection costs while retaining a desired detection rate. The detector uses a cascade that unites the handling of similar object classes while separating off classes at appropriate levels of the cascade. No prior knowledge about the relationship between classes is needed as the classifier structure is automatically determined during the training phase. The detection nodes in the cascade use Haar wavelet features and Gentle AdaBoost, however the approach is not dependent on the specific features used and can easily be extended to other cases. Experiments are presented for several numbers of object classes and the approach is compared to other classifying schemes. The results demonstrate a large efficiency gain that is particularly prominent for a greater number of classes. Also the complexity of the training scales well with the number of classes.
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2010
We present a simple yet elegant feature, RelCom, and a boosted selection method to achieve a very low complexity object detector. We generate combinations of low-level feature coefficients and apply relational operations such as margin based similarity rule over each possible pair of these combinations to construct a proposition space. From this space we define combinatorial functions of Boolean operators to form complex hypotheses that model any logical proposition. In case these coefficients are associated with the pixel coordinates, they encapsulate higher order spatial structure within the object window. Our results on benchmark datasets prove that the boosted RelCom features can match the performance of HOG features of SVM-RBF while providing 5X speed up and significantly outperform SVM-linear while reducing the false alarm rate 5X 20X. In case of intensity features the improvement in false alarm rate over SVM-RBF is 14X with a 128X speed up. We also demonstrate that RelCom based on pixel features is very suitable and efficient for small object detection tasks.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Computing Research Repository, 2009
EURASIP Journal on Embedded Systems, 2009
Neurocomputing, 2011
arXiv (Cornell University), 2018
18th International Conference on Pattern Recognition (ICPR'06), 2006
2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014
Modelling and Simulation in Engineering, 2015
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000
Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005