Academia.eduAcademia.edu

Two-level RRT planning for robotic push manipulation

2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

Abstract

This paper presents an algorithm for planning sequences of pushes, by which a robotic arm equipped with a single rigid finger can move a manipulated object (or manipulandum) towards a desired goal pose. Pushing is perhaps the most basic kind of manipulation, however it presents difficult challenges for planning, because of the complex relationship between manipulative pushing actions and resulting manipulandum motions. The motion planning literature has well developed paradigms for solving e.g. the piano-mover's problem, where the search occurs directly in the configuration space of the manipulandum object being moved. In contrast, in pushing manipulation, a plan must be built in the action space of the robot, which is only indirectly linked to the motion space of the manipulandum through a complex interaction for which inverse models may not be known.