Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
This paper presents an algorithm for planning sequences of pushes, by which a robotic arm equipped with a single rigid finger can move a manipulated object (or manipulandum) towards a desired goal pose. Pushing is perhaps the most basic kind of manipulation, however it presents difficult challenges for planning, because of the complex relationship between manipulative pushing actions and resulting manipulandum motions. The motion planning literature has well developed paradigms for solving e.g. the piano-mover's problem, where the search occurs directly in the configuration space of the manipulandum object being moved. In contrast, in pushing manipulation, a plan must be built in the action space of the robot, which is only indirectly linked to the motion space of the manipulandum through a complex interaction for which inverse models may not be known.
2009 IEEE International Conference on Robotics and Automation, 2009
We present the Constrained Bi-directional Rapidly-Exploring Random Tree (CBiRRT) algorithm for planning paths in configuration spaces with multiple constraints. This algorithm provides a general framework for handling a variety of constraints in manipulation planning including torque limits, constraints on the pose of an object held by a robot, and constraints for following workspace surfaces. CBiRRT extends the Bi-directional RRT (BiRRT) algorithm by using projection techniques to explore the configuration space manifolds that correspond to constraints and to find bridges between them. Consequently, CBiRRT can solve many problems that the BiRRT cannot, and only requires one additional parameter: the allowable error for meeting a constraint. We demonstrate the CBiRRT on a 7DOF WAM arm with a 4DOF Barrett hand on a mobile base. The planner allows this robot to perform household tasks, solve puzzles, and lift heavy objects.
IEEE Robotics & amp amp Automation Magazine
In this work, we present an integrated approach for planning collision-free grasping motions. The proposed Grasp–RRT planner combines the three main tasks needed for grasping an object: building a feasible grasp, solving the inverse kinematics problem and determining a collision-free trajectory that brings the hand to the grasping pose. Therefore, RRT-based algorithms are used to build a tree of reachable and collision-free configurations. During the tree generation, both grasp hypotheses and approach movements toward them are computed. The quality of reachable grasping poses is evaluated using grasp wrench space analysis. We present an extension to a dual arm planner which generates bimanual grasps together with collision-free dual arm grasping motions. The algorithms are evaluated with different setups in simulation and on the humanoid robot ARMAR-III.
2010 IEEE International Conference on Robotics and Automation, 2010
In this work, we present an integrated planner for collision-free single and dual arm grasping motions. The proposed Grasp-RRT planner combines the three main tasks needed for grasping an object: finding a feasible grasp, solving the inverse kinematics and searching a collision-free trajectory that brings the hand to the grasping pose. Therefore, RRTbased algorithms are used to build a tree of reachable and collision-free configurations. During RRT-generation, potential grasping positions are generated and approach movements toward them are computed. The quality of reachable grasping poses is scored with an online grasp quality measurement module which is based on the computation of applied forces in order to diminish the net torque. We also present an extension to a dual arm planner which generates bimanual grasps together with corresponding dual arm grasping motions. The algorithms are evaluated with different setups in simulation and on the humanoid robot ARMAR-III.
ArXiv, 2021
Within the field of robotic manipulation, a central goal is to replicate the human ability to manipulate any object in any situation using a sequence of manipulation primitives such as grasping, pushing, inserting, sliding, etc. Conceptually, each manipulation primitive restricts the object and robot to move on a lower-dimensional manifold defined by the primitive’s dynamic equations of motion. Likewise, a manipulation sequence represents a dynamically feasible trajectory that traverses multiple manifolds. To manipulate any object in any situation, robotic systems must include the ability to automatically synthesize manipulation primitives (manifolds) and sequence those primitives into a coherent plan (find a path across the manifolds). This paper investigates a principled approach for solving dexterous manipulation planning. This approach is based on rapidly-exploring random trees which use contact modes to guide tree expansion along primitive manifolds [10]. This paper extends thi...
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009
In this paper, we present efficient solutions for planning motions of dual-arm manipulation and re-grasping tasks. Motion planning for such tasks on humanoid robots with a high number of degrees of freedom (DoF) requires computationally efficient approaches to determine the robot's full joint configuration at a given grasping position, i.e. solving the Inverse Kinematics (IK) problem for one or both hands of the robot. In this context, we investigate solving the inverse kinematics problem and motion planning for dual-arm manipulation and re-grasping tasks by combining a gradient-descent approach in the robot's pre-computed reachability space with random sampling of free parameters. This strategy provides feasible IK solutions at a low computation cost without resorting to iterative methods which could be trapped by joint-limits. We apply this strategy to dual-arm motion planning tasks in which the robot is holding an object with one hand in order to generate whole-body robot configurations suitable for grasping the object with both hands. In addition, we present two probabilistically complete RRT-based motion planning algorithms (J + -RRT and IK-RRT) that interleave the search for an IK solution with the search for a collision-free trajectory and the extension of these planners to solving re-grasping problems. The capabilities of combining IK methods and planners are shown both in simulation and on the humanoid robot ARMAR-III performing dual-arm tasks in a kitchen environment.
arXiv (Cornell University), 2018
This paper presents a manipulation planning algorithm for robots to reorient objects. It automatically finds a sequence of robot motion that manipulates and prepares an object for specific tasks. Examples of the preparatory manipulation planning problems include reorienting an electric drill to cut holes, reorienting workpieces for assembly, and reorienting cargo for packing, etc. The proposed algorithm could plan single and dual arm manipulation sequences to solve the problems. The mechanism under the planner is a regrasp graph which encodes grasp configurations and object poses. The algorithms search the graph to find a sequence of robot motion to reorient objects. The planner is able to plan both single and dual arm manipulation. It could also automatically determine whether to use a single arm, dual arms, or their combinations to finish given tasks. The planner is examined by various humanoid robots like Nextage, HRP2Kai, HRP5P, etc., using both simulation and real-world experiments.
Algorithmic Foundations of …, 2004
This paper addresses the manipulation planning problem which deals with motion planning for robots manipulating movable objects among static obstacles. We propose a general manipulation planning approach capable to deal with continuous sets for modeling both the possible grasps and the stable placements of the movable object, rather than discrete sets generally assumed by the existing planners. The algorithm relies on a topological property that characterizes the existence of solutions in the subspace of configurations where the robot grasps the object placed at a stable position. This property leads to reduce the problem by structuring the search-space. It allows us to devise a manipulation planner that directly captures in a probabilistic roadmap the connectivity of sub-dimensional manifolds of the composite configuration space. Experiments conducted with the planner demonstrate its efficacy to solve complex manipulation problems.
1995
Abstract An emerging paradigm in solving the classical motion planning problem (among static obstacles) is to capture the connectivity of the configuration space using a finite (but possibly large) set of landmarks (or nodes) in it. In this paper, the authors extend this paradigm to manipulation planning problem, where the goal is to plan the motion of a robot so that it can move a given object from an initial configuration to a final configuration while avoiding collisions with the static obstacles in the environment.
IEEE Transactions on Industrial Informatics, 2019
This paper presents a manipulation planning algorithm for robots to reorient objects. It automatically finds a sequence of robot motion that manipulates and prepares an object for specific tasks. Examples of the preparatory manipulation planning problems include reorienting an electric drill to cut holes, reorienting workpieces for assembly, and reorienting cargo for packing, etc. The proposed algorithm could plan single and dual arm manipulation sequences to solve the problems. The mechanism under the planner is a regrasp graph which encodes grasp configurations and object poses. The algorithms search the graph to find a sequence of robot motion to reorient objects. The planner is able to plan both single and dual arm manipulation. It could also automatically determine whether to use a single arm, dual arms, or their combinations to finish given tasks. The planner is examined by various humanoid robots like Nextage, HRP2Kai, HRP5P, etc., using both simulation and real-world experiments.
2015
For intelligent robots to solve real-world tasks, they need to manipulate multiple objects, and perform diverse manipulation actions apart from rigid transfers, such as pushing and sliding. Planning these tasks requires discrete changes between actions, and continuous, collision-free paths that fulfill action-specific constraints. In this work, we propose a multi-modal path planner, named MOPL, which accepts generic definitions of primitive actions with different types of contact manifolds, and randomly spans its search trees through these subspaces. Our evaluation shows that this generic search technique allows MOPL to solve several challenging scenarios over different types of kinematics and tools with reasonable performance. Furthermore, we demonstrate MOPL by solving and executing plans in two real-world experimental setups.
2000
A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two Rapidly-exploring Random Trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.
2008
We present a novel motion planning algorithm for performing constrained tasks such as opening doors and drawers by robots such as humanoid robots or mobile manipulators. Previous work on constrained manipulation transfers rigid constraints imposed by the target object motion directly into the robot configuration space. This often unnecessarily restricts the allowable robot motion, which can prevent the robot from performing even simple tasks, particularly if the robot has limited reachability or low number of joints. Our method computes "caging grasps" specific to the object and uses efficient search algorithms to produce motion plans that satisfy the task constraints. The major advantages of our technique significantly increase the range of possible motions of the robot by not having to enforce rigid constraints between the end-effector and the target object. We illustrate our approach with experimental results and examples running on two robot platforms.
Workshops at the Twenty-Sixth AAAI …, 2012
The most critical moves that determine the success of a manipulation task are performed within the close vicinities of the object prior to grasping, and the goal prior to the final placement. Memorizing these state-action sequences and reusing them can dramatically improve the task efficiency, whereas even the state-of-the-art planning algorithms may require significant amount of time and computational resources to generate a solution from scratch depending on the complexity and the constraints of the task. In this paper, we propose a hybrid approach that combines the reliability of the past experiences gained through demonstration and the flexibility of a generative motion planning algorithm, namely RRT * , to improve the task execution efficiency. As a side benefit of reusing these final moves, we can dramatically reduce the number of nodes used by the generative planner, hence the planning time, by either early-terminating the planner when the generated plan reaches a "recalled state", or deliberately biasing it towards the memorized state-action sequences that are feasible at the moment. This complementary combination of the already available partial plans and the generated ones yield to fast, reliable, and repeatable solutions.
2012
In this work, we present an integrated approach for planning collision-free grasping motions. The proposed Grasp-RRT planner combines the three main tasks needed for grasping an object: building a feasible grasp, solving the inverse kinematics problem and searching a collision-free trajectory that brings the hand to the grasping pose. Therefore, RRT-based algorithms are used to build a tree of reachable and collisionfree configurations. During RRT-generation, grasp hypotheses are generated and approach movements toward them are computed. The quality of reachable grasping poses is evaluated via grasp wrench space analysis. We also present an extension to a dual arm planner which generates bimanual grasps together with corresponding dual arm grasping motions. The algorithms are evaluated with different setups in simulation and on the humanoid robot ARMAR-III.
2011 IEEE International Conference on Robotics and Automation, 2011
In this paper, we present a search-based motion planning algorithm for manipulation that handles the high dimensionality of the problem and minimizes the limitations associated with employing a strict set of pre-defined actions. Our approach employs a set of adaptive motion primitives comprised of static motions with variable dimensionality and on-the-fly motions generated by two analytical solvers. This method results in a slimmer, multi-dimensional lattice and offers the ability to satisfy goal constraints with precision. To validate our approach, we used a 7DOF manipulator to perform experiments on a real mobile manipulation platform (Willow Garage's PR2). Our results demonstrate the effectiveness of the planner in efficiently navigating cluttered spaces; the method generates consistent, low-cost motion trajectories, and guarantees the search is complete with bounds on the suboptimality of the solution.
IEEE Journal on Robotics and Automation, 1987
A simple and efficient algorithm is presented, using configuration space, to plan collision-free motions for general manipulators. An implementation of the algorithm for manipulators made up of revolute joints is also presented. The configuration-space obstacles for an n degree-of-freedom manipulator are approximated by sets of n-1dimensional slices, recursively built up from one-dimensional slices. This obstacle representation leads to an efficient approximation of the free space outside of the configuration-space obstacles.
International Conference on Robotics and Automation, 2007
This paper presents the ResolveSpatialConstraints (RSC) algorithm for manipulation planning in a domain with movable obstacles. Empirically we show that our algorithm quickly generates plans for simulated articulated robots in a highly nonlinear search space of exponential dimension. RSC is a reverse-time search that samples future robot actions and constrains the space of prior object displacements. To optimize the efficiency
Volume 5A: 40th Mechanisms and Robotics Conference, 2016
This paper presents a sampling-based method for path planning in robotic systems without known cost-to-go information. It uses trajectories generated from random search to heuristically learn the cost-to-go of regions within the configuration space. Gradually, the search is increasingly directed towards lower cost regions of the configuration space, thereby producing paths that converge towards the optimal path. The proposed framework builds on Rapidly-exploring Random Trees for random sampling-based search and Reinforcement Learning is used as the learning method. A series of experiments were performed to evaluate and demonstrate the performance of the proposed method.
IEEE International Conference Mechatronics and Automation, 2005, 2005
This paper presents a motion planner to automatically compute animations for virtual (human, humanoid or robot) mannequins cooperating to move bulky objects in cluttered environments. The main challenge is to deal with 3D collision avoidance while preserving the believability of the agents behaviors. To accomplish the coordinated task, a geometric and kinematic decoupling of the system is proposed. This decomposition enables us to plan a collisionfree path for a reduced system, then to animate locomotion and grasping behaviors in parallel, and finally to clean up the animation from residual collisions. These three steps are automatically applied making use of different techniques such as probabilistic path planning, locomotion controllers, inverse kinematics and path planning for closed-kinematic mechanisms.
Intelligent Robots and …, 2007
In this paper, we propose a new method for the motion planning problem of rigid object dexterous manipulation with a robotic multi-fingered hand, under quasi-static movement assumption. This method computes both object and finger trajectories as well as the finger relocation sequence. Its specificity is to use a special structuring of the research space that allows to search for paths directly in the particular subspace GSn which is the subspace of all the grasps that can be achieved with n grasping fingers. The solving of the dexterous manipulation planning problem is based upon the exploration of this subspace. The proposed approach captures the connectivity of GSn in a graph structure. The answer of the manipulation planning query is then given by searching a path in the computed graph. Simulation experiments were conducted for different dexterous manipulation task examples to validate the proposed method.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.