Academia.eduAcademia.edu

Mixture model based image segmentation with spatial constraints

2004

Abstract

ABSTRACT One of the many successful applications of Gaussian Mixture Models (GMMs) is in image segmentation, where spatially constrained mixture models have been used in conjuction with the Expectation-Maximization (EM) framework. In this paper, we propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation.