Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
5 pages
1 file
An algorithm is a well-defined way that takes some input in the form of certain values, processes them and gives certain values as output. Although there is a large variety of sorting algorithms, sorting problem has appealed a great deal of research; because effective sorting is important to enhance the use of other algorithms.A novel sorting algorithm namely " V-Re-Fr (VRF) Sorting Algorithm " is proposed to address the limitations of the current popular sorting algorithms. The goal of this paper is to propose a new algorithm which will provide improved functionality and reduce algorithm complexities. The observations backed by literature survey indicates that proposed algorithm is much more efficient in terms of number of swaps or iterations than the other algorithms having O(n2) complexity, like insertion, selection and bubble sort algorithms.
— sorting of elements is an important task in computation that is used frequently in different processes. For accomplish task in reasonable amount of time efficient algorithm is needed. Different types of sorting algorithms have been devised for the purpose. Which is the best suited sorting algorithm can only be decided by comparing the available algorithms in different aspects. In this paper a comparison is made for different sorting algorithms used in computation. Keywords— best sorting algorithm, bubble sort algorithms, quick sort algorithms, sorting algorithms, efficient sorting
International Journal of Computer Science and Mobile Computing, 2022
Data is the new fuel. With the expansion of the global technology, the increasing standards of living and with modernization, data values have caught a great height. Now a days, nearly all top MNCs feed on data. Now, to store all this data is a prime concern for all of them, which is relieved by the Data Structures, the systematic way of storing data. Now, once these data are stored and charged in secure vaults, it's time to utilize them in the most efficient way. Now, there are a lot of operations that needs to be performed on these massive chunks of data, like searching, sorting, inserting, deleting, merging and so more. In this paper, we would be comparing all the major sorting algorithms that have prevailed till date. Further, work have been done and an inequality in dimension of time between the four Sorting algorithms, Bubble, Selection, Insertion, Merge, that have been discussed in the paper have been proposed.
Sorting is an important task in many computer applications. Efficiency is a crucial factor when the amount of data is large. Memory allocation in operating systems, networks and databases use sorting concept. There are many ways to implementing different sorting algorithms. Though the real challenge lies in the implementation and the theoretical concept is of mere importance. The new sorting algorithm proposed uses the divide and conquer technique to increase the time efficiency. A new sorting algorithm has been put forth and its advantages and disadvantages have been discussed. The proposed algorithm is compared with other existing sorting algorithms. Finally, the possible implementations of this algorithm have been implemented.
2020
The problem of sorting is a problem that arises frequently in computer programming and though which is need to be resolved. Many different sorting algorithms have been developed and improved to make sorting optimized and fast. As a measure of performance mainly the average number of operations or the average execution times of these algorithms have been compared. There is no one sorting method that is best for every situation. Some of the factors to be considered in choosing a sorting algorithm include the size of the list to be sorted, the programming effort, the number of words of main memory available,the size of disk or tape units, the extent to which the list is already ordered, and the distribution of values.
Sorting is nothing but alphabetizing, categorizing, arranging or putting items in an ordered sequence. It is a key fundamental operation in the field of computer science. It is of extreme importance because it adds usefulness to data. In this papers, we have compared five important sorting algorithms (Bubble, Quick, Selection, Insertion and Merge). We have developed a program in C# and experimented with the input values 1-150, 1-300 and 1-950. The performance and efficiency of these algorithms in terms of CPU time consumption has been recorded and presented in tabular and graphical form.
2013
Many algorithms are available for sorting the unordered elements. Most important of them are Bubble sort, Heap sort, Insertion sort and Quick sort. This paper presents the new algorithm for sorting the elements which is based on minimum and maximum elements of the array which results in placing the elements at appropriate position. This will reduce the number of passes in which the sorting takes place. We will examine this sorting technique and compare with the other available sorting algorithms in terms of complexity, memory and other factors.
Sorting is an operation to arrange the elements of a data structure in some logical order. In our daily lifes, without knowing about sorting we are doing works in sorted order. So that's why everybody must need an efficient sorting technique which will solve sorting problem with in limited time. So We have discussed about various existing sorting algorithms with their advantage and disadvantage. In this paper, we have proposed a new sorting algorithm which overcomes some common disadvantage of some traditional existing algorithms by properly utilizing the memory. Here, we have compared our algorithm with traditional existing algorithms by using some factors.
One of the fundamental issues in computer science is ordering a list of items. Although there is a huge number of sorting algorithms, sorting problem has attracted a great deal of research; because efficient sorting is important to optimize the use of other algorithms. This paper presents two new sorting algorithms, enhanced selection sort and enhanced bubble Sort algorithms. Enhanced selection sort is an enhancement on selection sort by making it slightly faster and stable sorting algorithm. Enhanced bubble sort is an enhancement on both bubble sort and selection sort algorithms with O(nlgn) complexity instead of O(n 2) for bubble sort and selection sort algorithms. The two new algorithms are analyzed, implemented, tested, and compared and the results were promising.
— An algorithm is precise specification of a sequence of instruction to be carried out in order to solve a given problem. Sorting is considered as a fundamental operation in computer science as it is used as an intermediate step in many operations. Sorting refers to the process of arranging list of elements in a particular order. The elements are arranged in increasing or decreasing order of their key values. This research paper presents the different types of sorting algorithms of data structure like Bubble Sort, Selection Sort, Insertion Sort, Merge Sort and Quick Sort and also gives their performance analysis with respect to time complexity. These five algorithms are important and have been an area of focus for a long time but still the question remains the same of " which to use when? " which is the main reason to perform this research. Each algorithm solves the sorting problem in a different way. This research provides a detailed study of how all the five algorithms work and then compares them on the basis of various parameters apart from time complexity to reach our conclusion. I. INTRODUCTION Algorithm is an unambiguous, step-by-step procedure for solving a problem, which is guaranteed to terminate after a finite number of steps. In other words algorithm is logical representation of the instructions which should be executed to perform meaningful task. For a given problem, there are generally many different algorithms for solving it. Some algorithms are more efficient than others, in that less time or memory is required to execute them. The analysis of algorithms studies time and memory requirements of algorithms and the way those requirements depend on the number of items being processed. Sorting is generally understood to be the process of rearranging a given set of objects in a specific order and therefore, the analysis and design of useful sorting algorithms has remained one of the most important research areas in the field. Despite the fact that, several new sorting algorithms being introduced, the large number of programmers in the field depends on one of the comparison-based sorting algorithms: Bubble, Insertion, Selection sort etc. Hence sorting is an almost universally performed and hence, considered as a fundamental activity. The usefulness and significance of sorting is depicted from the day to day application of sorting in real-life objects. For instance, objects are sorted in: Telephone directories, income tax files, tables of contents, libraries, dictionaries. The methods of sorting can be divided into two categories: INTERNAL SORTING: If all the data that is to be sorted can be adjusted at a time in main memory, then internal sorting methods are used. EXTERNAL SORTING: When the data to be sorted can " t be accommodated in the memory at the time and some has to be kept in auxiliary memory (hard disk, floppy, tape etc) , then external sorting method are used. The complexity of a sorting algorithm measures the running time of function in which " n " numbers of items are sorted. The choice of which sorting method is suitable for a problem depends on various efficiency considerations for different problem. Three most important of these considerations are: The length of time spent by programmer in coding a particular sorting program. Amount of machine time necessary for running the program. The amount of memory necessary for running program. Stability-does the sort preserve the order of keys with equal values.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Research Journal of Applied Sciences, Engineering and Technology, 2014
International Journal of Applied Information Systems, 2014
2011 3rd International Conference on Computer Research and Development, 2011
International Journal of Computer Trends and Technology, 2014
Scientific Research and Essays, 2009
International Journal of Modern Education and Computer Science, 2013
International Journal of Computer Applications, 2020
Computers in Physics, 1990
International Journal of Computer Applications, 2013
Proceedings of National Conference on Convergent Innovative Technologies & Management (CITAM-2011) on 2 nd & 3 rd December 2011 at Cambridge Institute of Technology,Bangalore India, 2011