Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2010, Journal of Neuroscience
…
8 pages
1 file
with hearing impairment. This symposium will consider evidence that deafferentation of tonotopically organized central auditory structures leads to increased neuron spontaneous firing rates and neural synchrony in the hearing loss region. This region covers the frequency spectrum of tinnitus sounds, which are optimally suppressed following exposure to band-limited noise covering the same frequencies. Cross-modal compensations in subcortical structures may contribute to tinnitus and its modulation by jaw-clenching and eye movements. Yet many older individuals with impaired hearing do not have tinnitus, possibly because age-related changes in inhibitory circuits are better preserved. A brain network involving limbic and other nonauditory regions is active in tinnitus and may be driven when spectrotemporal information conveyed by the damaged ear does not match that predicted by central auditory processing.
The Journal of Neuroscience, 2010
Tinnitus is a phantom sound (ringing of the ears) that affects quality of life for millions around the world and is associated in most cases with hearing impairment. This symposium will consider evidence that deafferentation of tonotopically organized central auditory structures leads to increased neuron spontaneous firing rates and neural synchrony in the hearing loss region. This region covers the frequency spectrum of tinnitus sounds, which are optimally suppressed following exposure to band-limited noise covering the same frequencies. Cross-modal compensations in subcortical structures may contribute to tinnitus and its modulation by jaw-clenching and eye movements. Yet many older individuals with impaired hearing do not have tinnitus, possibly because age-related changes in inhibitory circuits are better preserved. A brain network involving limbic and other nonauditory regions is active in tinnitus and may be driven when spectrotemporal information conveyed by the damaged ear does not match that predicted by central auditory processing.
2012
Tinnitus is an auditory phantom sensation (ringing of the ears) experienced when no external sound is present. Most but not all cases are associated with hearing loss induced by noise exposure or aging. Neuroscience research has begun to reveal how tinnitus is generated by the brain when hearing loss occurs, and to suggest new avenues for management and prevention of tinnitus following hearing injuries. Downregulation of intracortical inhibition induced by damage to the cochlea or to auditory projection pathways highlights neural processes that underlie the sensation of phantom sound.
Current opinion in otolaryngology & head and neck surgery, 2012
Tinnitus is the sensation of hearing a sound when no external auditory stimulus is present. Most individuals experience tinnitus for brief, unobtrusive periods. However, chronic sensation of tinnitus affects approximately 17% (44 million people) of the general US population. Tinnitus, usually a benign symptom, can be constant, loud and annoying to the point that it causes significant emotional distress, poor sleep, less efficient activities of daily living, anxiety, depression and suicidal ideation/attempts. Tinnitus remains a major challenge to physicians because its pathophysiology is poorly understood and there are few management options to offer to patients. The purpose of this article is to describe the current understanding of central neural mechanisms in tinnitus and to summarize recent developments in clinical approaches to tinnitus patients. Recently developed animal models of tinnitus provide the possibility to determine neuronal mechanisms of tinnitus generation and to te...
Frontiers in Systems Neuroscience, 2012
The Journal of Neuroscience
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV 1) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV 1 interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV 1 interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous c oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Cerebral Cortex, 2005
Tinnitus is a common but poorly understood disorder characterized by ringing or buzzing in the ear. Central mechanisms must play a crucial role in generating this auditory phantom sensation as it persists in most cases after severing the auditory nerve. One hypothesis states that tinnitus is caused by a reorganization of tonotopic maps in the auditory cortex, which leads to an overrepresentation of tinnitus frequencies. Moreover, the participation of the limbic system in generating tinnitus has been postulated.
Although a peripheral auditory (bottom-up) deficit is an essential prerequisite for the generation of tinnitus, central cognitive (top-down) impairment has also been shown to be an inherent neuropatho-logical mechanism. Using an auditory oddball paradigm (for top-down analyses) and a passive listening paradigm (for bottom-up analyses) while recording electroencephalograms (EEGs), we investigated whether top-down or bottom-up components were more critical in the neuropathology of tinnitus, independent of peripheral hearing loss. We observed significantly reduced P300 amplitudes (reflecting fundamental cognitive processes such as attention) and evoked theta power (reflecting top-down regulation in memory systems) for target stimuli at the tinnitus frequency of patients with tinnitus but without hearing loss. The contingent negative variation (reflecting top-down expectation of a subsequent event prior to stimulation) and N100 (reflecting auditory bottom-up selective attention) were different between the healthy and patient groups. Interestingly, when tinnitus patients were divided into two subgroups based on their P300 amplitudes, their P170 and N200 components, and annoyance and distress indices to their tinnitus sound were different. EEG theta-band power and its Granger causal neurodynamic results consistently support a double dissociation of these two groups in both top-down and bottom-up tasks. Directed cortical connectivity corroborates that the tinnitus network involves the anterior cingulate and the parahippocampal areas, where higher-order top-down control is generated. Together, our observations provide neurophysiological and neurodynamic evidence revealing a differential engagement of top-down impairment along with deficits in bottom-up processing in patients with tinnitus but without hearing loss.
In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Frontiers in Systems Neuroscience, 2012
The international tinnitus journal, 2007
Journal of the Association for Research in Otolaryngology
The international tinnitus journal, 2017
Journal of the American Academy of Audiology, 2014
Orl-journal for Oto-rhino-laryngology and Its Related Specialties, 2006
Journal of Advanced Medical Sciences And Applied Technologies, 2016
Hearing Research, 2009
BMC Neuroscience, 2009
The Lancet Neurology, 2013
Cell and Tissue Research, 2014
Hearing Research, 2015