Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Physical Review Letters
…
4 pages
1 file
In the inflationary scenario of loop quantum cosmology (LQC) in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to confront with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background (CMB) and other cosmological experiments, we place bounds on the quantum corrections for a quadratic inflaton potential. PACS numbers: 98.80.Cq, 04.60.Pp
Journal of Cosmology and Astroparticle Physics, 2009
In loop quantum cosmology, non-perturbative quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce without introducing any new degrees of freedom. Though fundamentally discrete, the theory admits a continuum description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain the corresponding effective action, establishing in this way the covariance of the theory for the first time. This result provides new insights on the continuum properties of the discrete structure of quantum geometry and opens new avenues to extract physical predictions such as those related to gauge invariant cosmological perturbations.
Physical Review D, 2009
A consistent implementation of quantum gravity is expected to change the familiar notions of space, time and the propagation of matter in drastic ways. This will have consequences on very small scales, but also gives rise to correction terms in evolution equations of modes relevant for observations. In particular, the evolution of inhomogeneities in the very early universe should be affected. In this paper consistent evolution equations for gauge-invariant perturbations in the presence of inverse triad corrections of loop quantum gravity are derived. Some immediate effects are pointed out, for instance concerning conservation of power on large scales and non-adiabaticity. It is also emphasized that several critical corrections can only be seen to arise in a fully consistent treatment where the gauge freedom of canonical gravity is not fixed before implementing quantum corrections. In particular, metric modes must be allowed to be inhomogeneous: it is not consistent to assume only matter inhomogeneities on a quantum corrected homogeneous background geometry. In this way, stringent consistency conditions arise for possible quantization ambiguities which will eventually be further constrained observationally.
Physical Review D, 2013
We introduce a new framework for loop quantum gravity: mimicking the spinfoam quantization procedure we propose to study the symmetric sectors of the theory imposing the reduction weakly on the full kinematical Hilbert space of the canonical theory. As a first application of Quantum-Reduced Loop Gravity we study the inhomogeneous Bianchi I model. The emerging quantum cosmological model represents a simplified arena on which the complete canonical quantization program can be tested. The achievements of this analysis could elucidate the relationship between Loop Quantum Cosmology and the full theory.
International Journal of Modern Physics A, 2012
The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein–Hilbert action and to the cosmological constant, and those we cannot derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.
Physical Review D
General Relativity, Cosmology and Astrophysics, 2014
The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations in the Planck regime. This report provides a bird's eye view of these developments for the general relativity community.
Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using {\em the third-order uniform asymptotic approximations}, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratio is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ≲0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.
Classical and Quantum Gravity, 2011
Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: For matter satisfying the usual energy conditions any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues-e.g., the 'horizon problem'-from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this article is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without a loss of continuity.
Physical Review Letters, 2012
Since the standard inflationary paradigm is based on quantum field theory on classical spacetimes, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This pre-inflationary dynamics also opens a small window for novel effects, e.g. a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early universe.
Physical Review D, 2013
Cosmological perturbations are generally described by quantum fields on (curved but) classical space-times. While this strategy has a large domain of validity, it can not be justified in the quantum gravity era where curvature and matter densities are of Planck scale. Using techniques from loop quantum gravity, the standard theory of cosmological perturbations is extended to overcome this limitation. The new framework sharpens conceptual issues by distinguishing between the true and apparent trans-Planckian difficulties and provides sufficient conditions under which the true difficulties can be overcome within a quantum gravity theory. In a companion paper, this framework is applied to the standard inflationary model, with interesting implications to theory as well as observations.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
arXiv (Cornell University), 2016
Physics of the Dark Universe, 2017
Physical Review Letters, 2007
Journal of Cosmology and Astroparticle Physics, 2011
Classical and Quantum Gravity, 2013
Arxiv preprint gr-qc/0702030, 2007
New Journal of Physics, 2014
Classical and Quantum Gravity, 2009
Classical and Quantum Gravity, 2015
Classical and Quantum Gravity, 2008
Physical Review D, 2020
Physical Review D, 2008
The European Physical Journal C