Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013, International Journal of Modern Physics A
…
11 pages
1 file
We describe a geometrical way to unify gravity with the other natural forces by adding fermionic Lorentz scalar variables, characterising attribute or property, to space-time location.
International Journal of Modern Physics A, 2014
We develop the general relativity of extended spacetime-property for describing events including their properties. The anticommuting nature of property coordinates, augmenting space-time (x, t), allows for the natural emergence of generations and for the simple incorporation of gauge fields in the spacetime-property sector. With one electric property this results in a geometrical unification of gravity and electromagnetism, leading to a Maxwell-Einstein Lagrangian plus a cosmological term. Addition of one neutrinic and three chromic properties should lead to unification of gravity with electroweak and strong interactions. 8 R.Delbourgo and P.D.Stack Carrying out the algebraic manipulations, we obtain R J KLM = (−1) [J]([K]+[L]+[M]) (−1) [K][L] Γ KM J ,L − (−1) [K][M]+[L][M] Γ KL J ,M
2010
The General Theory of Relativity (GTR) is essentially a theory of gravitation. It is built on the Principle of Relativity. It is bonafide knowledge, known even to Einstein the founder, that the GTR violates the very principle upon which it is founded i.e., it violates the Principle of Relativity; because a central equation i.e., the geodesic law which emerges from the GTR, is well known to be in conflict with the Principle of Relativity because the geodesic law, must in complete violation of the Principle of Relativity, be formulated in special (or privileged) coordinate systems i.e., Gaussian coordinate systems. The Principle of Relativity clearly and strictly forbids the existence/use of special (or privileged) coordinate systems in the same way the Special Theory of Relativity forbids the existence of privileged and or special reference systems. In the pursuit of a more Generalized Theory of Relativity i.e., an all-encampusing unified field theory to include the Electromagnetic, Weak & the Strong force, Einstein and many other researchers, have successfully failed to resolve this problem. In this reading, we propose a solution to this dilemma faced by Einstein and many other researchers i.e., the dilemma of obtaining a more Generalized Theory of Relativity. Our solution brings together the Gravitational, Electromagnetic, Weak & the Strong force under a single roof via an extension of Riemann geometry to a new hybrid geometry that we have coined the Riemann-Hilbert Space (RHS). This geometry is a fusion of Riemann geometry and the Hilbert space. Unlike Riemann geometry, the RHS preserves both the length and the angle of a vector under parallel transport because the affine connection of this new geometry, is a tensor. This tensorial affine leads us to a geodesic law that truly upholds the Principle of Relativity. It is seen that the unified field equations derived herein are seen to reduce to the well known Maxwell-Procca equation, the non-Abelian nuclear force field equations, the Lorentz equation of motion for charged particles and the Dirac equation.
2019
In this paper, a spacetime structure consisting of a body-centered cubic lattice is modeled classically as a spring-mass system, where the components of each unit cell in the lattice are based on the fundamental units discovered by Max Planck, and the common forces that govern the motion of particles in spacetime is defined and unified by geometric shapes as the spacetime lattice oscillates.
2013
We propose in this paper a mathematicians' view of the Kaluza-Klein idea of a five dimensional space-time unifying gravitation and electromagnetism. By considering the classification of positive Einstein curvature tensors and the classical Cauchy-Choquet-Bruhat theorems in general relativity, we introduce concepts of types and rigidity. Then, abandoning the usual requirement of a Ricci-flat five dimensional spacetime, we show that a unified geometrical frame can be set for gravitation and electromagnetism, giving, by projection on the classical 4-dimensional space-time, the known Einstein-Maxwell-Lorentz equations for charged fluids. Thus, although not introducing, at least at this stage, new physics, we get a very aesthetic presentation of classical physics in the spirit of general relativity. The usual physical concepts, such as mass, energy, charge, trajectory, Maxwell-Lorentz law, are shown to be only various aspects of the geometry, for example curvature, of space-time considered as a Lorentzian manifold; that is no physical objects are introduced in space-time, no laws are given, everything is only geometry ! This work is therefore in the continuation of the various attempts made since Einstein,
arXiv (Cornell University), 2010
We propose in this paper a mathematicians' view of the Kaluza-Klein idea of a five dimensional space-time unifying gravitation and electromagnetism, and extension to higher-dimensional space-time. By considering the classification of positive Einstein curvature tensors and the classical Cauchy-Choquet-Bruhat theorems in general relativity, we introduce concepts of types and rigidity. Then, abandoning the usual requirement of a Ricci-flat five dimensional space-time, we show that a unified geometrical frame can be set for gravitation and electromagnetism, giving, by projection on the classical 4-dimensional space-time, the known Einstein-Maxwell-Lorentz equations for charged fluids. Thus, although not introducing, at least at this stage, new physics, we get a very aesthetic presentation of classical physics in the spirit of general relativity. The usual physical concepts, such as mass, energy, charge, trajectory, Maxwell-Lorentz law, are shown to be only various aspects of the geometry, for example curvature, of space-time considered as a Lorentzian manifold; that is no physical objects are introduced in space-time, no laws are given, everything is only geometry. We will then extend this setting to more than 5 dimensions, giving a precise mathematical frame for possible additional physical effects, preserving gravitation and electromagnetism. Version 22 04 2013. 1
arXiv (Cornell University), 2010
We propose in this paper a mathematicians' view of the Kaluza-Klein idea of a five dimensional space-time unifying gravitation and electromagnetism. By considering the classification of positive Einstein curvature tensors and the classical Cauchy-Choquet-Bruhat theorems in general relativity, we introduce concepts of types and rigidity. Then, abandoning the usual requirement of a Ricci-flat five dimensional space-time, we show that a unified geometrical frame can be set for gravitation and electromagnetism, giving, by projection on the classical 4-dimensional space-time, the known Einstein-Maxwell-Lorentz equations for charged fluids. Thus, although not introducing, at least at this stage, new physics, we get a very aesthetic presentation of classical physics in the spirit of general relativity. The usual physical concepts, such as mass, energy, charge, trajectory, Maxwell-Lorentz law, are shown to be only various aspects of the geometry, for example curvature, of space-time considered as a Lorentzian manifold; that is no physical objects are introduced in space-time, no laws are given, everything is only geometry! This work is therefore in the continuation of the various attempts made since Einstein, Weyl, Nordstrom, Kaluza, Klein, Rainich, Wheeler.
2015
The four dimensional spacetime continuum, as originally conceived by Minkowski, has become the default framework within which to describe physical laws. Due to its fundamental nature, there have been various attempts to derive this structure from more fundamental physical principles. In this paper, we show how the Minkowski spacetime structure arises directly from the geometrical properties of three dimensional space when modeled by Clifford geometric algebra of three dimensions Cℓ(ℜ 3). We find that a time-like dimension, as well as three spatial dimensions, arise naturally, as well as four additional degrees of freedom that we identify with spin. Within this expanded eightdimensional arena of spacetime, we find a generalisation of the invariant interval and the Lorentz transformations, with standard results returned as special cases. The power of this geometric approach is shown by the derivation of the fixed speed of light, the laws of special relativity and the form of Maxwell's equations, without any recourse to physical arguments. We also produce a unified treatment of energy-momentum and spin, as well as predicting a new class of physical effects and interactions.
arXiv (Cornell University), 2010
We consider in this paper, the geometrization of classical physics, i.e gravitation and electromagnetism. The goal is therefore to show that all the usual physical concepts, such as mass, energy, charge, trajectory, Maxwell-Lorentz law, are only various aspects of the geometry, for exemple curvature, of spacetime considered as a Lorentzian manifold; that is no object is "put" in spacetime, no laws are given, everything is only geometry. We show why this goal is probably inaccessible in dimension 4, and put forward, while studying this case, the concepts leading to a solution in a five-dimensional spacetime. The solution we propose does not use truly new mathematics, but more a different view of the classical axiomatism of the classical theories, and in particular the suppression of an hypothesis usually made about the Ricci curvature, unjustified from our point of view. This work is therefore in the continuation of the various attempts made since Einstein, Weyl, Nordstrom, Kaluza, Klein, Rainich, Wheeler.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
International Journal of Modern Physics A, 2015
International Journal of Modern Physics A, 1996
Physics Essays 24, 85 (2011), 2011
arXiv: History and Philosophy of Physics, 2023
Eprint Arxiv Gr Qc 0209081, 2002
Physics of Particles and Nuclei, 2013
AIP Conference Proceedings
Progress of Theoretical Physics, 1983
A Theory of Space, Time, and Gravity, 2024
Journal of Dynamics and Differential Equations, 2013
Foundations of Physics, 1995
Physical Review D, 2009
Journal of Innovation and Social Science Research, 2022