Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
1992, Biodegradation
…
15 pages
1 file
Halogenated alkanes constitute a significant group among the organic pollutants of environmental concern. Their industrial and agricultural uses are extensive, but until 1978 they were considered to be nonbiodegradable. In recent years, microorganisms were described that could degrade, partially or fully, singly or in consortia, many of the compounds tested. The first step in haloalkane degradation appears to be universal: removal of the halogen atom(s). This is mediated by a group of enzymes, generally known as dehalogenases, acting in most cases either as halidohydrolases or oxygenases. Nevertheless, information is still severely lacking regarding the biochemical pathways involved in these processes, as well as their genetic control.
Applied and Environmental Microbiology, 1993
Two Pseudomonas isolates, named ES-1 and ES-2, were shown to possess a wide degradative spectrum for haloalkanes in general and bromoalkanes in particular but did not degrade nonsubstituted alkanes. The utilization of water-insoluble haloalkanes, such as 1-bromooctane, appeared to consist of three phases: (i) extracellular emulsification by a constitutively excreted, broad-spectrum surface-active agent, (ii) dehalogenation by an inducible hydrolytic dehalogenase (possibly periplasmic), and (iii) intracellular degradation of the residual carbon skeleton. Several observations suggest the existence of more than one dehalogenase in strain ES-2.
Applied and Environmental Microbiology, 1998
Malaysian Journal of Microbiology, 2017
The liberation of halogenated compounds by both natural processes and man-made activities has led to extensive contamination of the biosphere. Bioremediation via the dehalogenation process offers a sustainable way to eliminate such hazardous contaminants. Whereas, a large number of natural soil microorganisms (i.e., bacteria and fungi) that have been isolated are capable of degrading and detoxifying such contaminants, information on the preferred types of halogenated compounds that they catalyze is lacking. In this review, we discuss those microorganisms that have the potential to perform bioremediation of such environmental contaminants. We also present a method for isolating novel dehalogenase-producing microorganisms from cow dung.
Journal of Molecular Microbiology and Biotechnology, 2008
cused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.
FEMS Microbiology Reviews, 1994
A limited number of halogenated aliphatic compounds can serve as a growth substrate for aerobic microorganisms. Such cultures have (specifically) developed a variety of enzyme systems to degrade these compounds. Dehalogenations are of critical importance. Various heavily chlorinated compounds are not easily biodegraded, although there are no obvious biochemical or thermodynamic reasons why microorganisms should not be able to grow with any halogenated compound. The very diversity of catabolic enzymes present in cultures that degrade halogenated aliphatics and the occurrence of molecular mechanisms for genetic adaptation serve as good starting points for the evolution of catabolic pathways for compounds that are currently still resistant to biodegradation.
Applied and Environmental Microbiology, 2002
Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical.
Bioprocess and Biosystems Engineering, 2020
The present study aimed to determine the degradation and transformation of three-ring PAHs phenanthrene and anthracene by Cryptococcus sp. MR22 and Halomonas sp. BR04 under halophilic conditions. The growth progress of Cryptococcus sp. MR22 and Halomonas sp. BR04 on anthracene and phenanthrene was monitored by colony-forming unit (CFU) technique. The growth of the bacteria was maintained at a maximum concentration of 200 mg/L of all tested hydrocarbon, indicating that Cryptococcus sp. MR22 and Halomonas sp. BR04 significantly perform in the removal of the PAH-contaminated medium at low concentrations. The fit model to represent the biodegradation kinetics of both PAHs was first-order rate equation The extract prepared from cells supplemented with three different substrates exhibited some enzymes such as hydroxylase, dioxygenase, laccase and peroxidase. The results suggest that both strains had an impressive ability in the degradation of aromatic and aliphatic hydrocarbon but also could tolerate in the extreme salinity condition.
Chemosphere, 2004
Biodegradation is a potentially important loss process for haloacetic acids (HAAs), a class of chlorination byproducts, in water treatment and distribution systems, but little is known about the organisms involved (i.e., identity, substrate range, biodegradation kinetics). In this research, 10 biomass samples (i.e., tap water, distribution system biofilms, and prechlorinated granular activated carbon filters) from nine drinking water systems were used to inoculate a total of thirty enrichment cultures fed monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), or trichloroacetic (TCAA) as sole carbon and energy source. HAA degraders were successfully enriched from the biofilm samples (GAC and distribution system) but rarely from tap water. Half of the MCAA and DCAA enrichment cultures were positive, whereas only one TCAA culture was positive (two were inconclusive). Eight unique HAA-degrading isolates were obtained including several Afipia spp. and a Methylobacterium sp.; all isolates were members of the phylum Proteobacteria. MCAA, monobromoacetic acid (MBAA), and monoiodoacetic acid (MIAA) were rapidly degraded by all isolates, and DCAA and tribromoacetic (TBAA) were also relatively labile. TCAA and dibromoacetic acid (DBAA) were degraded by only three isolates and degradation lagged behind the other HAAs. Detailed DCAA biodegradation kinetics were obtained for two selected isolates and two enrichment cultures. The maximum biomassnormalized degradation rates (V m ) were 0.27 and 0.97 µg DCAA/ µg protein/h for Methylobacterium fujisawaense strain PAWDI and Afipia felis strain EMD2, respectively, which were comparable to the values obtained for the enrichment cultures from which those organisms were isolated (0.39 and 1.37 µg DCAA/µg protein/h, respectively). The half-saturation constant (K m ) values ranged from 4.38 to 77.91 µg DCAA/L and the cell yields ranged from 14.4 to 36.1 mg protein/g DCAA.
Aims: This study aims to describe the biochemical and kinetic properties of a dehalogenase produced by a bacterium, Bacillus cereus WH2 (KU721999), that is uniquely adept at degrading a β-haloalkanoic acid, i.e., 3-chloropropionic acid (3-CP), and using it as the bacterium's sole carbon source. The bacterium was isolated from abandoned agricultural land in Universiti Teknologi Malaysia that was previously exposed to herbicides and pesticides. Methodology and results: The B. cereus impressively removed 97% of 3-CP after 36 h of culturing. The intracellular WH2 dehalogenase of the bacterium was purified 2.5-fold and has an estimated molecular mass of 37 kDa. The highest activity of the dehalogenase was achieved under conditions of 30 °C and pH 7. The metal ions Hg 2+ and Ag 2+ substantially repressed the enzyme's activity, but the enzyme's activity was uninhibited by dithiothreitol (DTT) and EDTA. The WH2 dehalogenase showed a higher affinity for 3-CP (Km = 0.32 mM, kcat = 5.74 s-1) than for 3-chlorobutyric acid (3-CB) (Km = 0.52 mM; kcat = 5.60 s-1). The enzyme was ~1.6-fold more catalytically efficient (kcat/Km) in dehalogenating the three-carbon substrate 3-CP (17.8 mM-1 s-1) than the four-carbon 3-CB (11.2 mM-1 s-1). Conclusion, significance and impact of study: The novel B. cereus bacterium isolated in this study may prove applicable as a bioremediation agent to cleaning environments that are polluted with β-halogenated compounds. Furthermore, such an approach to treat polluted environments is more sustainable and potentially safer than chemical treatments.
Applied Microbiology and Biotechnology, 2012
In this study we investigated the phenanthrene degradation by a halophilic consortium obtained from a saline soil sample. This consortium, named Qphe, could efficiently utilize phenanthrene in a wide range of NaCl concentrations, from 1% to 17% (w/v). Since none of the purified isolates could degrade phenanthrene, serial dilutions were performed and resulted in a simple polycyclic aromatic hydrocarbon (PAH)-degrading culture named Qphe-SubIV which was shown to contain one culturable Halomonas strain and one unculturable strain belonging to the genus Marinobacter. Qphe-SubIV was shown to grow on phenanthrene at salinities as high as 15% NaCl (w/v) and similarly to Qphe, at the optimal NaCl concentration of 5% (w/v), could degrade more than 90% of the amended phenanthrene in 6 days. The comparison of the substrate range of the two consortiums showed that the simplified culture had lost the ability to degrade chrysene but still could grow on other polyaromatic substrates utilized by Qphe. Metabolite analysis by HPLC and GC-MS showed that 2-hydroxy 1-naphthoic acid and 2-naphthol were among the major metabolites accumulated in the Qphe-SubIV culture media, indicating that an initial dioxygenation step might proceed at C1 and C2 positions. By investigating the growth ability on various substrates along with the detection of catechol dioxygenase gene, it was postulated that the uncultured Marinobacter strain had the central role in phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Environmental Science & Technology, 2009
Applied and Environmental Microbiology, 2003
Applied and …, 1985
3 biotech, 2019
Journal of Chemistry, 2014
European Journal of Biochemistry, 1988
Environmental Microbiology, 2010
Journal of Environmental Management, 2009