Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2014, Experimental Astronomy
The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered.
2019
This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration unless explicitly specified in the text. It is not
Experimental Astronomy
Since the discovery of the first extrasolar planet more than twenty years ago, we have discovered more than three thousand planets orbiting stars other than the Sun. Current observational instruments (on board the Hubble Space Telescope, Spitzer, and on ground-based facilities) allowed the scientific community to obtain important information on the physical and chemical properties of these planets. However, for a more in-depth characterisation of these worlds, more powerful telescopes are needed. Thanks to the high sensitivity of their instruments, the next generation of space observatories (e.g. James Webb Space Telescope, ARIEL) will provide observations of unprecedented quality, allowing us to extract far more information than what was previously possible. Such high quality observations will provide constraints on theoretical models of exoplanet atmospheres and lead to a greater understanding of the physics and chemistry. Important modelling efforts have been carried out during the past few years, showing that numerous parameters and processes (such as the element abundances, temperature, mixing, etc.) are likely to effect the atmospheric composition of exoplanets and subsequently the observable spectra. In this manuscript, we review the different parameters that can influence the molecular composition of exoplanet atmospheres. We also consider future developments that are necessary to improve atmospheric models, driven by the need to interpret the available observations and show how ARIEL is going to improve our view and characterisation of exoplanet atmospheres.
arXiv: Earth and Planetary Astrophysics, 2019
We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction ki...
Astronomy & Astrophysics, 2015
Context. While the existence of more than 1800 exoplanets have been confirmed, there is evidence of a wide variety of elemental chemical composition, that is to say different metallicities and C/N/O/H ratios. Atmospheres with a high C/O ratio (above 1) are expected to contain a high quantity of hydrocarbons, including heavy molecules (with more than two carbon atoms). To correctly study these C-rich atmospheres, a chemical scheme adapted to this composition is necessary. Aims. We have implemented a chemical scheme that can describe the kinetics of species with up to six carbon atoms (C 0 -C 6 scheme ⋆ ). This chemical scheme has been developed with combustion specialists and validated by experiments that were conducted on a wide range of temperatures (300 -2500 K) and pressures (0.01 -100 bar). Methods. To determine for which type of studies this enhanced chemical scheme is mandatory, we created a grid of 12 models to explore different thermal profiles and C/O ratios. For each of them, we compared the chemical composition determined with a C 0 -C 2 chemical scheme (species with up to two carbon atoms) and with the C 0 -C 6 scheme. We also computed synthetic spectra corresponding to these 12 models. Results. We found no difference in the results obtained with the two schemes when photolyses were excluded from the model, regardless of the temperature of the atmosphere. In contrast, differences can appear in the upper atmosphere (P>∼1-10 mbar) when there is photochemistry. These differences are found for all the tested pressure-temperature profiles if the C/O ratio is above 1. When the C/O ratio of the atmosphere is solar, differences are only found at temperatures lower than 1000 K. The differences linked to the use of different chemical schemes have no strong influence on the synthetic spectra. However, with this study, we have confirmed C 2 H 2 and HCN as possible tracers of warm C-rich atmospheres.
Cornell University - arXiv, 2016
Advancements in our understanding of exoplanetary atmospheres, from massive gas giants down to rocky worlds, depend on the constructive challenges that occur between observations and models. Both from the ground and from space, we are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize the atmospheric structure, composition, and circulation of these worlds. These improvements stem from significant investments by numerous funding agencies in new missions and facilities, such as the James Webb Space Telescope (JWST) and the several planned ground-based extremely large telescopes. However, while exoplanet science currently has a wide range of sophisticated models that can be applied to the tide of forthcoming observations, the trajectory for preparing these models for the upcoming observational challenges is unclear. Thus, our ability to maximize the insights gained from the next generation of ground-and space-based observatories is not certain. In many cases, uncertainties in a path towards model advancement stems from insufficiencies in the laboratory data that serve as critical inputs to atmospheric physical and chemical tools. This white paper was initiated within NASA's Nexus for Exoplanet System Science (NExSS), in collaboration with the larger exoplanet science community, to review the state of this science. We outline a number of areas where laboratory or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry. Specifically highlighted are needs for: (1) molecular opacity linelists with parameters for a diversity of broadening gases, (2) extended databases for collision-induced absorption and dimer opacities, (3) high spectral resolution opacity data for a variety of relevant molecular species, (4) laboratory studies of haze and condensate formation and optical properties, (5) significantly expanded databases of chemical reaction rates, and (6) measurements of gas photoabsorption cross sections at high temperatures. We hope that by meeting these needs, we can make the next two decades of exoplanet science as productive and insightful as the previous two decades.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020
The detection of habitable exoplanets is an exciting scientific and technical challenge. Owing to the current and most likely long-lasting impossibility of performing in situ exploration of exoplanets, their study and hypotheses regarding their capability to host life will be based on the restricted low-resolution spatial and spectral information of their atmospheres. On the other hand, with the advent of the upcoming exoplanet survey missions and technological improvements, there is a need for preliminary discrimination that can prioritize potential candidates within the fast-growing list of exoplanets. Here we estimate, for the first time and using the kinetic theory of gases, a list of the possible atmospheric species that can be retained in the atmospheres of the known exoplanets. We conclude that, based on our current knowledge of the detected exoplanets, 45 of them are good candidates for habitability studies. These exoplanets could have Earth-like atmospheres and should be ab...
2022
A major goal in the discovery and characterisation of exoplanets is to identify terrestrial-type worlds that are similar to (or otherwise distinct from) our Earth. Recent results have highlighted the importance of applying devolatilisation -- i.e. depletion of volatiles -- to the chemical composition of planet-hosting stars to constrain bulk composition and interiors of terrestrial-type exoplanets. In this work, we apply such an approach to a selected sample of 13 planet-hosting Sun-like stars, for which high-precision photospheric abundances have been determined in the first paper of the series. With the resultant devolatilised stellar composition (i.e. the model planetary bulk composition) as well as other constraints including mass and radius, we model the detailed mineralogy and interior structure of hypothetical, habitable-zone terrestrial planets ("exo-Earths") around these stars. Model output shows that most of these exo-Earths are expected to have broadly Earth-lik...
2021
Thermochemical equilibrium is one of the most commonly used assumptions in current exoplanet retrievals. As the James Webb Space Telescope (JWST) and Ariel launch draw near, assessing the underlying biases and assumptions made when applying self-consistent chemistry into spectral retrievals is crucial. Here we use the flexibility of TauREx 3.1 to cross-compare three state of the art chemical equilibrium codes: ACE, FastChem and GGchem. We simulate JWST spectra for ACE, FastChem, GGchem and GGchem+condensation containing only C, H, O, N elements and spectra for FastChem, GGchem and GGchem+condensation with a more extensive range of elements giving seven simulated JWST spectra in total and then cross-retrieve giving a total of 49 retrievals. Our analysis demonstrates that like-for-like, all chemical codes retrieve the correct parameters to < 1% of the truth. However, retrievals, where the contained elements do not match the truth, parameters such as metallicity deviate by 20% while...
Proceedings of The International Astronomical Union, 2006
Over 150 extrasolar planets are known to orbit sun-like stars. A growing number of them (9 to date) are transiting "hot Jupiters" whose physical characteristics can be measured. Atmospheres of two of these planets have already been detected. We summarize the atmosphere detections and useful upper limits, focusing on the MOST albedo upper limit and H exosphere detection for HD209458b as the most revelant for photochemical models. We describe our photochemical model for hot Jupiters and present a summary explanation of the main results: a low gas-phase abundance of hydrocarbons; an absence of hydrocarbon hazes; and a large reservoir of H atoms in the upper atmospheres of hot Jupiters. We conclude by relating these model results to the relevant observational data.
Journal of Molecular Spectroscopy, 2016
The ExoMol database (www.exomol.com) provides extensive line lists of molecular transitions which are valid over extended temperatures ranges. The status of the current release of the database is reviewed and a new data structure is specified. This structure augments the provision of energy levels (and hence transition frequencies) and Einstein A coefficients with other key properties, including lifetimes of individual states, temperature-dependent cooling functions, Landé g-factors, partition functions, cross sections, k-coefficients and transition dipoles with phase relations. Particular attention is paid to the treatment of pressure broadening parameters. The new data structure includes a definition file which provides the necessary information for utilities accessing ExoMol through its application programming interface (API). Prospects for the inclusion of new species into the database are discussed.
Experimental Astronomy
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet's birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and welldefined planet sample within its 4-year mission lifetime. Transit, eclipse and phasecurve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H 2 O, CO 2 , CH 4 NH 3 , HCN, H 2 S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performedusing conservative estimates of mission performance and a
2009
Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. A review on the current situation of exoplanet characterization is presented in Chapter 3. We focus on the characterization of transiting planets orbiting very close to their parent star since for them we can already probe their atmospheric constituents. By contrast, the second part of the Chapter is dedicated to the search for extraterrestrial life, both within and beyond the Solar System. The characteristics of the Habitable Zone and the markers for the presence of life (biosignatures) ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.