Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009, Ecological Modelling
…
10 pages
1 file
The need to implement sustainable resource management regimes for semi-arid and arid rangelands is acute as non-adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In these sensitive ecosystems, traditional sectoral, disciplinary approaches will not work to attain sustainability: achieving a collective vision of how to attain sustainability requires interactive efforts among disciplines in a more integrated approach.
Journal of Applied Ecology, 2007
1. Sustainable land use under climate change requires detailed knowledge of the system dynamics. This applies particularly for the management of domestic livestock in semiarid and arid grazing systems, where the risk of degradation is high and likely climate change may have a strong impact. A suitable way to assess potential future trends of these complex systems is through the application of simulation models. 2. We reviewed 41 models published between 1995 and 2005 simulating semi-arid and arid livestock grazing systems. The models were categorized according to the model aim and type, their temporal and spatial scale, and several indicators of model complexity. Additionally, we developed a list of model requirements for adequately simulating the effects of climate change. Based on these requirements, we evaluated the potential of current models to simulate impacts of climate change and determine important shortcomings.
Climatic Change, 2000
Livestock production in South Africa is limited by frequent droughts. The South African Weather Service produces climate forecasts estimating the probability of low rainfall three and six months into the future. We used the ecosystem model SAVANNA applied to five commercial farms in the Vryburg region of the North-West Province, and five communal areas within the Province, to assess the utility of a climate forecast in refining drought coping strategies. Rainfall data from 1970 to 1994 were modified to represent a drought (225 mm of rainfall) in 1977/1978, and used in simulations. In a simulation on an example commercial farm we assumed a forecast was available in 1977 portending an upcoming drought, and that the owner sold 490 cattle and 70 sheep prior to the drought. Over the simulation period, the owner sold 31% more cattle when the forecast was used, versus when the forecast was ignored. Populations of livestock on both commercial and communal farms recovered more quickly following the drought when owners sold animals in response to the forecast. The economic benefit from sales is being explored using optimization techniques. Results and responses from South African livestock producers suggest that a real-time farm model linked with climate forecasting would be a valuable management tool.
Journal of Applied Ecology, 2012
1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO 2 level increase in combination with changes in interand intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO 2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration.
Scale-dependent parameter models were developed and nested to the Soil and Water Assessment Tool-SWAT to simulate climate and land use change impacts on water-sediment-nutrient yields in Benin at a regional scale (49,256 km²). Weighted contributions of relevant landscape attributes characterizing the spatial pattern of ongoing hydrological processes were used to constrain the model parameters to acceptable physical meanings. Climate change projections (describing a rainfall reduction of up to 25%) simulated throughout the Regional Model-REMO, very sensitive to a prescribed degradation of land cover, were considered. Land use change scenarios in which the population growth was translated into a specific demand for settlements and croplands (cropland increase of up to 40%) according to the development of the national framework, were also considered. The results were consistent with simulations performed at the meso-scale (586 km 2 ) where local management operations were incorporated. Surface runoff, groundwater flow, sediment and organic N and P yields were affected by land use change (as major effects) of −8% to +50%, while water yield and evapotranspiration were dominantly affected by climate change of −31% to +2%. This tendency was more marked
2009
Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.
Drylands are home to over 2 billion people globally, many of whom use the land for agricultural and pastoral activities. These vulnerable livelihoods could be disrupted if desert dunefields become more active in response to climate and land use change. Despite increasing knowledge about the role that wind, moisture availability and vegetation cover play in shaping dryland landscapes, relatively little is known about how drylands might respond to climatic and population pressures over the 21 st century. Here we use a newly developed numerical model, which fully couples vegetation and sediment-transport dynamics, to simulate potential landscape evolution at three locations in the Kalahari Desert, under two future emissions scenarios: stabilising (RCP 4.5) and high (RCP 8.5). Our simulations suggest that whilst our study sites will experience some climatically-induced landscape change, the impacts of climate change alone on vegetation cover and sediment mobility may be relatively small. However, human activity could strongly exacerbate certain landscape trajectories. Fire frequency has a primary impact on vegetation cover, and, together with grazing pressure, plays a significant role in modulating shrub encroachment and ensuing land degradation processes. Appropriate land management strategies must be implemented across the Kalahari Desert to avoid severe environmental and socioeconomic consequences over the coming decades. Drylands as non-equilibrium environments Dryland environments are extreme in their nature, typified by non-equilibrium conditions in climate, vegetation and geomorphology 1–3. The strong interannual variability in precipitation that is characteristic of drylands 4 often results in the formation of dynamic vegetation patterning 5. These patterns, which range from 'gaps' to 'labyrinths' , 'stripes' and 'spots' , likely arise from adaptation to resource limitation (specifically of water), with plant-plant facilitation occurring at short distances and competition acting at larger distances 6–9. In turn, the patchy nature of semi-arid vegetation makes it an important variable in shaping the rate and extent to which geomorphological processes operate, notably wind-blown sediment movement 10, 11. The interactions between vegetation, geomorphology and, increasingly, humans, often result in shifts in the composition and patterning of dryland ecosystems. Ecosystem regime shifts involve the transition from one stable state to an alternative stable state 12–15 , and can broadly be divided into two categories: (i) small, slow and reversible; and (ii) large, abrupt and irreversible. Large, abrupt shifts can be detrimental to dryland ecosystems because they cause rapid and widespread loss of bioproductivity and biodiversity 16, 17. This affects ecosystem function and stability 18, 19 and thus a broad range of ecosystem services, from economic resources to recreation, firewood and food 17, 20 , which help to sustain a large majority of dryland livelihoods. There is particular concern about how land degradation, particularly through bush encroachment and associated losses of grass species 8, 21–24 , may intersect with increasing rural poverty levels 25. Whilst large-scale vegetation shifts are known to result from variations in external (climatic and CO 2) forcing 26 , the potential impacts of 21 st century climatic change on dry-land vegetation cover and composition remain unclear 27. Abrupt ecosystem shifts in drylands can also be triggered or exacerbated by a range of human disturbances, such as agriculture, grazing and fire 28–32. Modelling studies have shown that such disturbances can lead to hys-teretic ecosystem recovery 6, 16, 33 , whereby the state of the landscape depends on past as well as current conditions. The potential existence of vastly different vegetation covers in the same climatic context has important
ISRN Ecology, 2011
Ecological functioning of the intensive, homogeneous agroecosystems in the Chippewa River Watershed (CRW), MN, USA, can be improved by reducing soil erosion, runoff, and nutrient leaching. These ecosystem services can be achieved through increased perennials in crop rotations to diversify land use and sustain carbon sequestration. We calibrated, validated, and used APSIM software to simulate the effect of 100 yrs each of historical and future climate change scenario (IPCC-A2) on biophysical processes in representative soil types of the predominant farming systems in CRW. The interrelationships between crop rotations, soil types, climate variables, and ecosystem services indicated that not all objectives of sustainable agro-ecosystem are compatible, and tradeoffs among them are necessary. Site-specific and diversified crop rotations that comply with the environmental constraints of climate and soils could lead to more efficient implementation of strategies to improve ecosystem services in the watershed if current management practices of high external inputs and tillage persisted.
Climate Change - Geophysical Foundations and Ecological Effects, 2011
Conservation Biology, 2014
Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Applied Sciences, 2020
South African Journal of Botany, 2018
Diversity and Distributions, 2012
Climatic change, 2001
Jurnal Manajemen Hutan Tropika (Journal of Tropical Forest Management), 2013
Field Crops Research, 2011
ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2014
Oecologia, 2015
Proceedings e report, 2009