Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2008, Current Biology
AI
Neurons possess a unique ability to adapt their microtubule cytoskeleton, allowing mature neurons to form new axons after axonal injury. This process involves the transformation of dendrites into axons, facilitated by microtubule stabilization. The findings suggest that mechanisms inherent in the polarization of developing neurons may be repurposed for regeneration in mature neurons, indicating that older cells can exhibit plasticity akin to younger cells.
European Journal of Neuroscience, 2001
The distinctive features of axons and dendrites divide most neurons into two compartments. This polarity is fundamental to the ability of most neurons to integrate synaptic signals and transmit action potentials. It is not known, however, if the polarity of neurons in the adult mammalian nervous system is ®xed or plastic. Following axotomy, some distal dendrites of neck motoneurons in the adult cat give rise to unusual processes that, at a light microscopic level, resemble axons (Rose, P.K. & Odlozinski, M., J. Comp. Neurol., 1998, 390, 392). The goal of the present experiments was to characterize these unusual processes using well-established ultrastructural and molecular criteria that differentiate dendrites and axons. These processes were immunoreactive for growth-associated protein-43 (GAP-43), a protein that is normally con®ned to axons. In contrast, immunoreactivity for a protein that is widely used as a marker for dendrites, microtubule-associated protein (MAP)-2a/b, could not be detected in the unusual distal arborizations. At the electron microscopic level, unusual distal processes contained dense collections of neuro®laments and were frequently myelinated. These molecular and structural characteristics are typical of axons and suggest that the polarity of adult neurons in the mammalian nervous system can be disrupted by axotomy. If this transformation in neuronal polarity is common to other types of neurons, axon-like processes emerging from distal dendrites may represent a mechanism for replacing connections lost due to injury. Alternatively, the connections formed by these axons may be aberrant and therefore maladaptive.
Journal of Neuroscience, 2016
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus-and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.
The Journal of Comparative Neurology, 2004
At 8 -12 weeks post axotomy, unusual distal processes (UDPs) with axon-like structural (uniform diameter, tortuous) and molecular (growth-associated protein [GAP]43, absence of microtubule-associated protein [MAP]2a/b immunoreactivity) features emerge from distal motoneuron dendrites ] Eur J Neurosci 13:1166 -1176. In this study, we determine the time course of molecular and morphological changes associated with the formation of axons from dendrites. Motoneurons innervating neck muscles in the adult cat were permanently axotomized for 2, 4, 20, or 35 weeks and intracellularly stained with Neurobiotin. Computerassisted reconstructions were used to map the location of MAP2a/b and GAP-43 immunoreactivity. At 2 and 4 weeks post axotomy, all UDPs had short appendages, giving them an arboreal appearance. They were immunoreactive for GAP-43 and lacked immunostaining for MAP2a/b. Axon-like UDPs were not seen until 8 -12 weeks post axotomy. By 20 and 35 weeks post axotomy, some axon-like UDPs acquired morphological features of axons with synaptic connections (rightangled branching, bouton-like specializations). GAP-43 immunoreactivity was not detected in any axotomized motoneurons by 20 weeks post axotomy, whereas all UDPs remained devoid of MAP2a/b immunoreactivity even at 35 weeks post axotomy. These molecular changes accompanied structural modifications to proximal regions of "dendrites" giving rise to UDPs. The distance from the ends of the UDPs to the soma did not change. Thus, all UDPs begin as simple, arboreal structures with molecular features of growing axons, but over a period of 35 weeks, some UDPs slowly acquire morphological and molecular features of motoneuron axons with synaptic connections. These results suggest a new modus operandi for axonal growth and the establishment of new synaptic connections after injury.
Neural Development, 2009
Background: Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites.
2003
We examined the cytoskeletal dynamics that characterize neurite sprouting after axonal injury to cortical neurons maintained in culture for several weeks and compared these with initial neurite development. Cultured neocortical neurons, derived from embryonic day 18 rats, were examined at 3 d in vitro (DIV) and at various time points after axotomy at 21 DIV. The postinjury neuritic response was highly dynamic, progressing through an initial phase of retraction, followed by substantial axonal sprouting within 4 -6 hr. Postinjury sprouts were motile and slender with expanded growth cone-like end structures. Microtubule markers were localized to sprout shafts and the proximal regions of putative growth cones and filamentous actin was distributed throughout growth cones, whereas neurofilament proteins were restricted to sprout shafts. A similar distribution of cytoskeletal proteins was present in developing neurites at 3 DIV. Exposure of developing and mature, injured cultures to the microtubule stabilizing agent taxol (10 g/ml) caused growth inhibition, process distension, the transformation of growth cones into bulbous structures, and abnormal neurite directionality. Microtubule and neurofilament segregation occurred after taxol exposure in developing neurites and postinjury sprouts. Exposure to the microtubule destabilizing agent nocodazole (100 g/ml) resulted in substantial morphological alteration of developing neurons and inhibited neurite growth and postinjury axonal sprouting. Our results indicate that the axons of cortical neurons have an intrinsic ability to sprout after transection, and similar cytoskeletal dynamics underlie neurite development and postinjury axonal sprouting.
The Journal of Neuroscience, 1989
Biological Reviews, 1979
Journal of Neurocytology, 1992
If one end of a segment of peripheral nerve is inserted into the brain or spinal cord, neuronal perikarya in the vicinity of the graft tip can be labelled with retrogradely transported tracers applied to the distal end of the graft several weeks later, showing that CNS axons can regenerate into and along such grafts. We have used transmission EM to examine some of the cellular responses that underlie this regenerative phenomenon, particularly its early stages. Segments of autologous peroneal or tibial nerve were inserted vertically into the thalamus of anaesthetized adult albino rats. The distal end of the graft was left beneath the scalp. Between five days and two months later the animals were killed and the brains prepared for ultrastructural study. Semi-thin and thin sections through the graft and surrounding brain were examined at two levels 6-7 mm apart in all animals: close to the tip of the graft in the thalamus (proximal graft) and at the top of the cerebral cortex (distal graft). In another series of animals with similar grafts, horseradish peroxidase was applied to the distal end of the graft 2448 h before death. Examination by LM of appropriately processed serial coronal sections of the brains from these animals confirmed that up to several hundred neurons were retrogradely labelled in the thalamus, particularly in the thalamic reticular nucleus.
Trends in Neurosciences, 2000
Neural geometry is the major factor that determines connectivity and, possibly, functional output from a nervous system. Recently some of the proteins and pathways involved in specific modes of branch formation or maintenance, or both, have been described.To a variable extent, dendrites and axon collaterals can be viewed as dynamic structures subject to fine modulation that can result either in further growth or retraction. Each form of branching results from specific molecular mechanisms. Cell-internal, substrate-derived factors and functional activity, however, can often differ in their effect according to cell type and physiological context at the site of branch formation. Neural branching is not a linear process but an integrative one that takes place in a microenvironment where we have only a limited experimental access. To attain a coherent mechanism for this phenomenon, quantitative in situ data on the proteins involved and their interactions will be required.
Neuroscience, 1994
Microtubule associated proteins play a central role in the control of axon growth. We have used immunohistochemical techniques to establish which microtubule-associated proteins are present in the rat hindlimb spinal cord, dorsal root ganglia and peripheral nerves during axonal growth during embryogenesis, in adulthood, and during regeneration of crushed sciatic nerves. During embryogenesis microtubule-associated protein-lb and tau are present in all neurons and axons, microtubule-associated protein-2 is present in neurons but not in axons, and there is no microtubule-associated protein-la. In adults, microtubule-associated protein-la and microtubule-associated protein-lb are present in all sciatic nerve axons and in motor and dorsal root ganglion neurons, Tau, in its adult form, is present in many fine probably sensory axons, but not in most larger axons, and in motor and sensory neurons. Microtubule-associated protein-2 is present only in neurons. During regeneration the pattern of microtubule-associated protein expression retains the adult pattern. All regenerating axons contain microtubule-associated protein-la and microtubule-associated protein-lb, none contain microtubuleassociated protein-2, and a subset of fine axons contain tau. There is no detectable change in microtubule-associated protein expression by motoneurons. While axons are clearly able to regenerate without either microtubule-associated protein-2 or tau, tau containing axons appear to regenerate faster than those which lack it. It is possible that the failure of neurons to recapitulate the embryonic pattern of microtubule-assoaated protein expression during regeneratron could be a reason why regenerative axon growth is slower and less vigorous than axon growth in embryos
Journal of Neurotrauma, 1998
In animal models of human diffuse axonal injury, axonal swellings leading to secondary axotomy occur between 2 and 6 h after injury. But, analysis of cytoskeletal changes associated with secondary axotomy has not been undertaken. We have carried out a quantitative analysis of cytoskeletal changes in a model of diffuse axonal injury 4 h after stretch-injury to adult guinea-pig optic nerves. The major site of axonal damage was the middle portion of the nerve. There was a statistically significant increase in the proportion of small axons with a diameter of 0.5 m and smaller in which there was compaction of neurofilaments. Axons with a diameter greater than 2.0 m demonstrated an increased spacing between cytoskeletal elements throughout the length of the nerve. However, in the middle segment of the nerve these larger axons demonstrated two different types of response. Either, where periaxonal spaces occurred, there was a reduction in axonal calibre, compaction of neurofilaments but no change in their number, and a loss of microtubules. Or, where intramyelinic spaces occurred there was an increased spacing between neurofilaments and microtubules with a significant loss in the number of both. Longitudinal sections showed foci of compaction of neurofilaments interspersed between regions where axonal structure was apparently normal. Neurofilament compaction was correlated with disruption of the axolemma at these foci present some hours after injury. We suggest that the time course of these axonal cytoskeletal changes after stretch-injury to central axons is shorter than those changes documented to occur during Wallerian degeneration.
BioArchitecture, 2014
The Journal of Neuroscience, 2007
Axons in the CNS do not regrow after injury, whereas lesioned axons in the peripheral nervous system (PNS) regenerate. Lesioned CNS axons form characteristic swellings at their tips known as retraction bulbs, which are the nongrowing counterparts of growth cones. Although much progress has been made in identifying intracellular and molecular mechanisms that regulate growth cone locomotion and axonal elongation, a comprehensive understanding of how retraction bulbs form and why they are unable to grow is still elusive. Here we report the analysis of the morphological and intracellular responses of injured axons in the CNS compared with those in the PNS. We show that retraction bulbs of injured CNS axons increase in size over time, whereas growth cones of injured PNS axons remain constant. Retraction bulbs contain a disorganized microtubule network, whereas growth cones possess the typical bundling of microtubules. Using in vivo imaging, we find that pharmacological disruption of microtubules in growth cones transforms them into retraction bulb-like structures whose growth is inhibited. Correspondingly, microtubule destabilization of sensory neurons in cell culture induces retraction bulb formation. Conversely, microtubule stabilization prevents the formation of retraction bulbs and decreases axonal degeneration in vivo. Finally, microtubule stabilization enhances the growth capacity of CNS neurons cultured on myelin. Thus, the stability and organization of microtubules define the fate of lesioned axonal stumps to become either advancing growth cones or nongrowing retraction bulbs. Our data pinpoint microtubules as a key regulatory target for axonal regeneration.
Molecular Biology of the Cell, 2004
We have investigated the movement of GFP-tagged neurofilaments at the distal ends of growing axons using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that (1) growth cones are a preferential site of neurofilament reversal in distal axons, (2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, (3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and (4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency. dissociated from the superior cervical ganglion of neonatal rats typically grow at rates of 4-30 µm/hour (0.001-0.008 µm/s; , depending on the substrate, yet neurofilaments in these neurons move at average rates (excluding pauses) of 0.4-0.7 µm/s . This suggests that anterogradely moving neurofilaments in the distal regions of growing axons may catch up with the 5 advancing growth cone. Previous studies did not address this hypothesis because they were all performed in intermediate regions of the axon, far from the growth cone. Thus, in the present study, we investigated neurofilament transport at the tips of growing axons. We found that most anterograde neurofilaments in the distal axon catch up with and enter the growth cone. In addition, and to our surprise, some of these filaments subsequently reverse direction, exit the growth cone, and move back towards the cell body. Thus local mechanisms at the axon tip can alter the direction of neurofilament movement, presumably by altering the activity of the neurofilament motors or their affinity for their cargo.
The identities of axons and dendrites are acquired through the self-organization of distinct microtubule (MT) orientations during neuronal polarization. The axon is generally characterized by a uniform MT orientation with all plus-ends pointing outward to the neurite terminal ('plus-end-out' pattern). On the other hand, the MT orientation pattern in the dendrites depends on species: vertebrate dendrites have a mixed alignment with both plus and minus ends facing either the terminal or the cell body ('mixed' pattern), whereas invertebrate dendrites have a 'minus-end-out' pattern. However, how MT organizations are developed in the axon and the dendrites is largely unknown. To investigate the mechanism of MT organization, we developed a biophysical model of MT kinetics, consisting of polymerization/depolymerization and MT catastrophe coupled with neurite outgrowth. The model simulation showed that the MT orientation can be controlled mainly by the speed of neurite growth and the hydrolysis rate. With a low hydrolysis rate, vertebrate plus-end-out and mixed microtubule patterns emerged in fast-and slow-growing neurites, respectively. In contrast, with a high hydrolysis rate, invertebrate plus-end-out and minus-end-out microtubule patterns emerged in fast-and slowgrowing neurites, respectively. Thus, our model can provide a unified understanding of distinct microtubule organizations by simply changing the parameters.
2012
One of the striking features of the injured central nervous system (CNS) is the failure of severed axons to adequately regenerate to restore loss of function. This was initially believed to be caused by an intrinsic inability of injured axons to sprout regenerative processes. However, the seminal studies of Albert Aguayo and others using peripheral or cellular tissue grafts transplanted into the lesioned spinal cord have clearly demonstrated that the environment of the injured CNS is a critical determinant of whether injured axons can regenerate . The molecular determinates of the inhibitory CNS environment are now well-understood, with major players being myelin-associated molecules (such as nogo, myelin-associated glycoprotein) and chondroitin sulphate proteoglycans .
Proceedings of the …, 2001
Experimental evidence suggests that microfilaments and microtubules play contrasting roles in regulating the balance between motility and stability in neuronal structures. Actin-containing microfilaments are associated with structural plasticity, both during development when their dynamic activity drives the exploratory activity of growth cones and after circuit formation when the actin-rich dendritic spines of excitatory synapses retain a capacity for rapid changes in morphology. By contrast, microtubules predominate in axonal and dendritic processes, which appear to be morphologically relatively more stable. To compare the cytoplasmic distributions and dynamics of microfilaments and microtubules we made time-lapse recordings of actin or the microtubuleassociated protein 2 tagged with green fluorescent protein in neurons growing in dispersed culture or in tissue slices from transgenic mice. The results complement existing evidence indicating that the high concentrations of actin present in dendritic spines is a specialization for morphological plasticity. By contrast, microtubule-associated protein 2 is limited to the shafts of dendrites where time-lapse recordings show little evidence for dynamic activity. A parallel exists between the partitioning of microfilaments and microtubules in motile and stable domains of growing processes during development and between dendrite shafts and spines at excitatory synapses in established neuronal circuits. These data thus suggest a mechanism, conserved through development and adulthood, in which the differential dynamics of actin and microtubules determine the plasticity of neuronal structures.
Cellular Migration and Formation of Neuronal Connections, 2013
The Journal of Neuroscience
The Journal of cell biology, 1992
Abstract. We have investigated the sites of microtu-bule (MT) assembly in neurons during axon growth by taking advantage of the relationship between the pro-portion of tyrosinated c~-tubulin (tyr-tubulin) in MTs and their age. Specifically, young (newly assembled) MTs contain ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.