Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Induced Pluripotent Stem Cells (iPSCs) are self renewable and can differentiate to different types of adult cells, which has shown great promises in the field of regenerative medicine. iPSCs are reprogrammed from human somatic cells through ectopic expression of various transcription factors viz. Oct4, Sox2, Klf4, and c-Myc (OSKM). This novel technology enables derivation of patient specific cells, which possess a potential cure for many diseases. During the last decade, significant progresses have been achieved in enhancing the reprogramming efficiency, safety of iPSCs derivation, development of different delivery techniques by various research groups. Nevertheless, it is important to resolve and define the mechanism underlying the pluripotent stem cells. Major bottleneck which arises during iPSCs generation is the availability of source material (cells/tissues), difficulty to deliver transcription factors with no aberrant genetic modifications and limited reprogramming efficiency. Reprogramming may be achieved by employing different cocktails with number of different transcription factors, application of miRNA and some small molecules such as (Valproic acid, CHiR99021, Sodium butyrate, Vitamin C, Parnate etc). Similarly, various starting source materials have been demonstrated for iPSC based therapies including fibroblasts, cord blood, peripheral blood, keritinocytes, urine, etc., with their specific uses and limitations. Moreover, with the advent of many new reprogramming techniques, various direct delivery methods have been introduced such as using synthetic mRNA expressing pluripotent gene network has been shown to be an appropriate technique to deliver transcription factors and a dozen of small molecules which can replace transcription factors or enhance reprogramming efficiency. This article addresses the iPSCs technology mechanisms, progresses and current perspectives in the field.
How to cite this article: Rawat N, Singh MK (2017) Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology, Veterinary World, 10(6): 640-649. Abstract Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.
Cell Stem …, 2009
To-date, all methods to generate induced pluripotent stem (iPS) cells require the use of genetic materials and/or potentially mutagenic molecules. Here we report the generation of stable iPS cells from human fibroblasts by directly delivering four reprogramming proteins ...
Journal of Tissue Engineering and Regenerative Medicine, 2010
Journal of Assisted Reproduction and Genetics, 2011
Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
Acta neurobiologiae experimentalis, 2014
Derivation of pluripotent stem cells from adult somatic tissues by reprogramming technology has opened new therapeutic possibilities. Current most efficient procedures for derivation of induced pluripotent stem (iPS) cells are based on the viral vectors, which represent the danger of insertional mutagenesis during incorporation of introduced genes into the host genome. To circumvent this problem, the new, safe, non-integrative and non-viral strategies of reprogramming have been developed. In this review we discuss novel DNA-free and viral-free methods of reprogramming to iPS cells including protein transduction, mRNA and microRNA delivery.
Journal of Analytical & Pharmaceutical Research
The generation of induced pluripotent stem cell (iPSC) from somatic cells demonstrated that mature mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of few embryogenic transcription factor. iPSCs are reprogrammed from human somatic cells through ectopic expression of various transcription factors viz. Oct4, Sox2, Klf4, and c-Myc (OSKM). This novel technology enables derivation of patient specific cells, which possess a potential cure for many diseases. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of cancer and also the degenerative disorders with autologous cells. Many cancer cells exchange with these cells and cure the cancer. We summarize in this article the potential clinical application of iPSC.
Journal of Cellular Biochemistry, 2012
The discovery of the ability to induce somatic cells to a pluripotent state through the overexpression of specific transcription factors has the potential to transform the ways in which pharmaceutical agents and cellular transplantation therapies are developed. Proper utilization of the technology to generate induced pluripotent stem cells (iPSCs) requires that researchers select the appropriate reprogramming method for generating iPSCs so that the resulting iPSCs can be transitioned towards clinical applications effectively. This article reviews all of the currently available reprogramming techniques with a focus on critiquing them on the basis of their utility in translational medicine.
Journal of Animal Research, 2014
The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and ageassociated disorders, particularly of the cardiovascular, neural and metabolic systems. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable. Although there are currently several strategies to deliver reprogramming factors to induce iPSCs. In this study we have focus is on utilize plasmid vector to reprogramm because of convenience, reasonable efficiency and zero genes fingerprints and xeno free production of iPSCs. This virus-free technique reduces the safety concern for iPScell generation and application, and provides a source of cells for the investigation of the mechanisms underlying reprogramming and pluripotency.
International Journal of Blood Transfusion and Immunohematology, 2015
Introduction: The discovery that the mature cells can be reprogrammed to become pluripotent increased the enormous interest in induced pluripotent stem cell (iPSC) technology for their potential application in biomedical sciences. The breakthrough research offering induction of pluripotent status in somatic cells by direct reprogramming depends upon the genes used for induction. The induced pluripotent stem cells share features with embryonic stem cells such as pluripotency and immortality. The iPSC technology opened new avenues and provided vast opportunities for regenerative therapy and therapeutic drug development. This review summarizes the developments in iPSC technology highlighting the generation of iPSCs from blood as a source, which is a very important finding, alleviating the need for more invasive techniques such as skin punch biopsies.
Acta Naturae, 2010
Induced pluripotent stem cells (iPSCs) are a new type of pluripotent cells that can be obtained by reprogramming animal and human differentiated cells. In this review, issues related to the nature of iPSCs are discussed and different methods of iPSC production are described. We particularly focused on methods of iPSC production without the genetic modification of the cell genome and with means for increasing the iPSC production efficiency. The possibility and issues related to the safety of iPSC use in cell replacement therapy of human diseases and a study of new medicines are considered. KEYWORDS cell reprogramming, induced pluripotent stem cells, directed stem cell differentiation, cell replacement therapy ABBREVIATIONS ESC-embryonic stem cells, iPSCs-induced pluripotent stem cells, NSCs-neural stem cells, ASCsadipose stem cells, PDFs-papillary dermal fibroblasts, CMs-cardiomyocytes, SMA-spinal muscular atrophy, SMA-iPSCs-iPCSs derived from fibroblasts of SMA patients, GFP-green fluorescent protein, LTR-long terminal repeat
Stem Cell Reviews and Reports, 2010
Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.
Animal testing has shown unsatisfaction when it comes to examination of hepato-neuro-and cardiotoxicity, as well as in the development of new therapies, while use of in vitro model systems is limited by unavailability of human tissues. For this reason, use of human embryonic stem cells (hESC) as unlimited source for producing differentiated somatic progeny, represents a great medical advance. Induced pluripotent stem cells (iPSC) represent a new type of stem cells that occur by reprogramming of genomes of adult stem cells, such as dermal fibroblasts into a pluripotent state. These cells have many similarities with embryonic stem cells, and their reprogramming requests transcription factors OCT4, SOX2, and KLF4. IPSC are characterized by the ability of recovery and differentiation into different cell types such as-cells, hepatocytes, cardiomyocytes, hematopoietic cells, which opens the door to the new methods of treatment of many diseases especially in the field of personalized regenerative medicine. This paperwork contains future trends and possibilities of using iPSC's in regenerative personalized medicine, and with great certainty we can say that the discovery of the same has brought a revolutionary changes to medicine, and that these cells will soon be used not only for modeling of various diseases, but also for treating diseases and finding and testing new drugs that will help to improve the quality of life in many patients.
Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers.
Philosophical Transactions of the Royal Society B: Biological Sciences, 2011
Somatic cells have been reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors, such as Oct3/4, Sox2, Klf4, and c-Myc.
Stem cell reviews, 2012
To provide a comprehensive source of information about the reprogramming process and induced pluripotency. The ability of stem cells to renew their own population and to differentiate into specialized cell types has always attracted researchers looking to exploit this potential for cellular replacement therapies, pharmaceutical testing and studying developmental pathways. While adult stem cell therapy has already been brought to the clinic, embryonic stem cell research has been beset with legal and ethical impediments. The conversion of human somatic cells to human induced pluripotent stem cells (hiPSCs), which are equivalent to human embryonic stem cells (hESCs), provides a system to sidestep these barriers and expedite pluripotent stem cell research for the aforementioned purposes. However, being a very recent discovery, iPSCs have yet to overcome many other obstacles and criticism to be proven safe and feasible for clinical use. This review introduces iPSC, the various methods th...
International Journal of Molecular Sciences, 2017
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
Stem Cells and Development, 2014
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10-30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.
Japanese Journal of Clinical Oncology, 2012
In 1998, human embryonic stem cells were first generated and were expected to contribute greatly to regenerative medicine. However, when medical treatments were performed using human embryonic stem cells, there were problems, such as transplant rejection, as well as bioethical issues. Induced pluripotent stem cells were generated from mouse and human fibroblasts in 2006 and 2007 by introducing four transcription factors (Oct3/4, Sox2, c-Myc and Klf4). This process was defined as direct reprogramming, and induced pluripotent stem cells were better tolerated. Although induced pluripotent stem cells have contributed greatly to biomedical research and regenerative medicine, high tumorigenic potential is still a critical problem due to the introduction of the oncogene c-Myc and reprogramming with a virus vector. To address this, we reprogrammed somatic cells by transfection with microribonucleic acids to avoid using virus vectors for genomic integration into the host genome. We found that it was possible to reprogram mouse and human cells to pluripotency by direct transfection of three mature microribonucleic acids (mir-200c,-302s and-369s) with increased expression levels in embryonic stem cells and induced pluripotent stem cells. The microribonucleic acid-induced pluripotent stem cells have a reduced risk of mutations and tumorigenesis. Our laboratory also introduced four transcription factors (Oct3/4, Sox2, c-Myc and Klf4) into cancer cells, generating induced pluripotent cancer cells that exhibited strikingly less malignant features, suggesting the possibility of a novel type of cancer therapy. However, the gene transduction method is not yet safe for clinical applications, due to a genomic integration that may cause tumor formation. We are currently investigating the reprogramming method using microribonucleic acids in cancer cells to develop a very safe, highly efficient and highly complete reprogramming for clinical applications.
Stem Cells, 2009
The availability of induced pluripotent stem cells (iPSCs) has created extraordinary opportunities for modeling and perhaps treating human disease. However, all reprogramming protocols used to date involve the use of products of animal origin. Here, we set out to develop a protocol to generate and maintain human iPSC that would be entirely devoid of xenobiotics. We first developed a xeno-free cell culture media that supported the long-term propagation of human embryonic stem cells (hESCs) to a similar extent as conventional media containing animal origin products or commercially available xeno-free medium. We also derived primary cultures of human dermal fibroblasts under strict xeno-free conditions (XF-HFF), and we show that they can be used as both the cell source for iPSC generation as well as autologous feeder cells to support their growth. We also replaced other reagents of animal origin (trypsin, gelatin, matrigel) with their recombinant equivalents. Finally, we used vesicular stomatitis virus G-pseudotyped retroviral particles expressing a polycistronic construct encoding Oct4, Sox2, Klf4, and GFP to reprogram XF-HFF cells under xeno-free conditions. A total of 10 xeno-free human iPSC lines were generated, which could be continuously passaged in xeno-free conditions and maintained characteristics indistinguishable from hESCs, including colony morphology and growth behavior, expression of pluripotency-associated markers, and pluripotent differentiation ability in vitro and in teratoma assays. Overall, the results presented here demonstrate that human iPSCs can be generated and maintained under strict xeno-free conditions and provide a path to good manufacturing practice (GMP) applicability that should facilitate the clinical translation of iPSC-based therapies.
Cell Research, 2011
, but the use of iPSCs is hindered by the use of viral delivery systems. Chemical-induced reprogramming offers a novel approach to generating iPSCs without any viral vector-based genetic modification. Previous reports showed that several small molecules could replace some of the reprogramming factors although at least two transcription factors, Oct4 and Klf4, are still required to generate iPSCs from mouse embryonic fibroblasts. Here, we identify a specific chemical combination, which is sufficient to permit reprogramming from mouse embryonic and adult fibroblasts in the presence of a single transcription factor, Oct4, within 20 days, replacing Sox2, Klf4 and c-Myc. The iPSCs generated using this treatment resembled mouse embryonic stem cells in terms of global gene expression profile, epigenetic status and pluripotency both in vitro and in vivo. We also found that 8 days of Oct4 induction was sufficient to enable Oct4-induced reprogramming in the presence of the small molecules, which suggests that reprogramming was initiated within the first 8 days and was independent of continuous exogenous Oct4 expression. These discoveries will aid in the future generation of iPSCs without genetic modification, as well as elucidating the molecular mechanisms that underlie the reprogramming process.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.