Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2008, New Journal of Physics
…
11 pages
1 file
A fully-connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick spin glasses, with superconducting qubit networks. PACS numbers: 03.67.-a, 75.10.Pq
The quantum dynamics of chains of superconducting qubits is analyzed under realistic experimental conditions. Electromagnetic fluctuations due to the background circuitry, finite temperature in the external environment, and disorder in the initial preparation and the control parameters are taken into account. It is shown that the amount of disorder that is typically present in current experiments does not affect the entanglement dynamics significantly. However, the effect of the environmental noise can modify entanglement generation and propagation across the chain. We study the persistence of coherent effects in the presence of noise and possible ways to efficiently detect the presence of quantum entanglement. We also discuss under which circumstances the system exhibits steady state entanglement for both short (N < 10) and long (N > 30) chains and show that there are parameter regimes where the steady state entanglement is strictly non-monotonic as a function of the noise st...
Annalen der Physik, 2013
The Jaynes‐Cummings model describes the coupling between photons and a single two‐level atom in a simplified representation of light‐matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes‐Cummings‐Hubbard model, in which the elementary excitations are polariton quasi‐particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non‐equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well‐controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head‐on, is an exciting idea which has served as theorists’ playground for a while an...
Physical Review Letters, 2011
Present-day implementations of quantum information processing rely on two widely different types of quantum bits (qubits). On the one hand, microscopic systems such as atoms or spins are naturally well decoupled from their environment and as such can reach extremely long coherence times ; on the other hand, more macroscopic objects such as superconducting circuits are strongly coupled to electromagnetic fields, making them easy to entangle although with shorter coherence times . It thus seems appealing to combine the two types of systems in hybrid structures that could possibly take the best of both worlds. Here we report the first experimental realization of a hybrid quantum circuit in which a superconducting qubit of the transmon type is coherently coupled to a spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal [8] via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back later on into the qubit. We demonstrate that this process preserves quantum coherence by performing quantum state tomography of the qubit. These results constitute a first proof of concept of spin-ensemble based quantum memory for superconducting qubits [12]. As a landmark of the successful marriage between a superconducting qubit and electronic spins, we detect with the qubit the hyperfine structure of the NV center.
Physical Review B, 2008
Superconducting quantum circuits, fabricated with multiple layers, are proposed to implement perfect quantum state transfer between nodes of a hypercube network. For tunable devices such as the phase qubit, each node can transmit quantum information to any other node at a constant rate independent of the distance between qubits. The physical limits of quantum state transfer in this network are theoretically analyzed, including the effects of disorder, decoherence, and higher-order couplings.
Scientific Reports, 2014
Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses Z z 2 6Z 2 symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization.
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of an open quantum spin chain. As such, LDE can be considered an elementary precursor of edge modes and topological order. We discuss two possible implementations which simulate open chains with uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring LDE. In the first case the adiabatic manipulation and the Ising interactions are realized using dc-currents, while in the second case microwaves fields are used to control the smoothness of the transformation and to realize the effective XX interactions. We demonstrate the adiabatic preparation of the end-to-end entanglement in chains of four qubits with realistic parameters and on a relatively fast time scale.
The mesoscopic scale of superconducting qubits makes their inter-spacings comparable to the scale of wavelength of a circuit cavity field to which they commonly couple. This comparability results in inhomogeneous coupling strengthes for each qubit and hence asynchronous Rabi excitation cycles among the qubits that form a quasi-lattice. We find that such inhomogeneous coupling benefits the formation of multi-photon resonances between the single-mode cavity field and the quasi-lattice. The multi-photon resonances lead, in turn, to the simultaneous generation of inequivalent |GHZ and |W types of multipartite entanglement states, which are not transformable to each other through local operations with classical communications. Applying the model on the 3-qubit quasilattice and using the entanglement measures of both concurrence and 3-tangle, we verify that the inhomogeneous coupling specifically promotes the generation of the totally inseparable |GHZ state.
2025
Andreev (or superconducting) spin qubits (ASQs) have recently emerged as a promising qubit platform that combines superconducting circuits with semiconductor spin degrees of freedom. While recent experiments have successfully coupled two ASQs, how to realize a scalable architecture for extending this coupling to multiple distant qubits remains an open question. In this work, we resolve this challenge by introducing an architecture that achieves all-to-all connectivity between multiple remote ASQs. Our approach enables selective connectivity between any qubit pair while keeping all other qubit pairs uncoupled. Furthermore, we demonstrate the feasibility of efficient readout using circuit quantum electrodynamics techniques and compare different readout configurations. Our architecture shows promise both for gate-based quantum computing and for analog quantum simulation applications by offering higher qubit connectivity than alternative solid-state platforms.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Physical Review A, 2006
Quantum Science and Technology
Physical Review A, 2004
Cornell University - arXiv, 2004
Nature Physics, 2010
Physical Review A, 2010
2012
Physica Scripta, 2009
Physical Review A, 2009
Physical Review B, 2008
Physical Review Letters, 2003
Physical Review A, 2015
Physical Review Letters
Physical Review Letters, 2005
Physica C: Superconductivity, 2002