Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device’s motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user’s fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0% of the BioTac’s full 12-bit scale. The second experiment evaluated human subjects’ experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.
Lecture Notes in Computer Science, 2014
This paper presents a novel approach to remote tactile interaction, wherein a human uses a telerobot to touch a remote environment. The proposed system consists of a BioTac tactile sensor, in charge of registering contact deformations, and a custom cutaneous device, in charge of applying those deformations to the user's fingertip via a 3-DoF mobile platform. We employ a novel data-driven algorithm to directly map the BioTac's sensed stimuli to input commands for the cutaneous device's motors, without using any kind of skin deformation model. We validated the proposed approach by carrying out a remote tactile interaction experiment. Although this work employed a specific cutaneous device, the experimental protocol and algorithm are valid for any similar display.
This paper presents a novel approach to remote tactile interaction, wherein a human uses a telerobot to touch a remote environment. The proposed system consists of a BioTac tactile sensor, in charge of registering contact deformations, and a custom cutaneous device, in charge of applying those deformations to the user's fingertip via a 3-DoF mobile platform. We employ a novel data-driven algorithm to directly map the BioTac's sensed stimuli to input commands for the cutaneous device's motors, without using any kind of skin deformation model. We validated the proposed approach by carrying out a remote tactile interaction experiment. Although this work employed a specific cutaneous device, the experimental protocol and algorithm are valid for any similar display.
IEEE Transactions on Haptics, 2012
This paper presents the development of a compact tactile display and its integration in teleoperation. The system's operation is based on the display of surface shape to an area of the fingertip through a 4 Â 4 array of tactors moving perpendicularly to the skin surface. The tactors are spring loaded and are actuated remotely by dc motors through a flexible tendon transmission. This novel implementation of conventional actuation principles achieves a compact design with superior performance compared to devices of a similar footprint, demonstrating an excellent combination of tactor spatiotemporal resolution, force, and amplitude. The display's ergonomic design and high performance make it suitable for integration on haptic devices for tactile feedback in VR and in Teleoperation. This paper presents the design, control, and performance of the tactile display and of the transmission system. It also demonstrates its integration on an Omega7 force feedback device for the teleoperation of an LWR KUKA manipulator. An experiment is presented where users teleoperated the stylus of the robot in a 3D contour following task with and without tactile feedback. In this experiment, force feedback from the slave is fused with model-based local tactile feedback. Subjects' performances indicate an improvement in teleoperation when both tactile and force feedback are present.
2007
This paper proposes that there are ultimately only two topical tactile feedback generation modalities for haptic human interfaces which allow the human operator to handle either (i) temporary VR-based material replicas of the local geometric and/or force profile at the contact areas of an unlimited set of generic objects that could virtually be handled during the manipulation, or (ii) permanent material replicas of a limited set of typical objects. Examples of tactile human interfaces developed by the authors for telerobotic blind tactile exploration of objects, for telerobotic hapto-visual stylus-style tool manipulation are presented to illustrate the proposed approach. A NN architecture allowing for the modelling of the elastic properties of 3D objects from experimental tactile and range imaging data is also presented.
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012
Tactile feedback is a key modality in object exploration and manipulation. However it has not been satisfactorily addressed in master-slave teleoperation. One of the reasons is that current tactile displays do not satisfy the stringent performance and design requirements for integration in master haptic devices. This paper presents the integration of a compact, high performance tactile display in a teleoperation setup. In this scenario the tactile display provides tactile feedback while remote objects are being contacted through a soft robotic finger. The display is mounted on a force feedback master device, which controls a manipulator equipped with a force sensor and a soft finger. Force feedback and tactile feedback are combined in a hybrid approach. Force feedback on the master reflects the measured remote interaction forces while tactile feedback is model based. This hybrid feedback method can provide force and tactile information in cases of highly structured teleoperation scenes where tactile sensing is absent or rudimentary while accurate environment models exist. An experiment is presented where users teleoperated the robot finger in a 3D contour following task with and without tactile feedback. Subjects' performances indicate an improvement in teleoperation when both tactile and force feedback are present.
2020
Sensors and human machine interfaces for collaborative robotics will allow smooth interaction in contexts ranging from industry to tele-medicine and rescue. This paper introduces a bidirectional communication system to achieve multisensory telepresence during the gestural control of an industrial robotic arm. Force and motion from the robot are converted in neuromorphic haptic stimuli delivered on the user's hand through a vibro-tactile glove. Untrained personnel participated in an experimental task benchmarking a pick-and-place operation. The robot end-effector was used to sequentially press six buttons, illuminated according to a random sequence, and comparing the tasks executed without and with tactile feedback. The results demonstrated the reliability of the hand tracking strategy developed for controlling the robotic arm, and the effectiveness of a neuronal spiking model for encoding hand displacement and exerted forces in order to promote a fluid embodiment of the haptic i...
Presence: Teleoperators and Virtual Environments, 2003
This paper describes and evaluates a high-fidelity, low-cost haptic interface for tele-operation. The interface is a wearable vibrotactile glove containing miniature voice coils that provides continuous, proportional force information to the user's finger-tips. In psychophysical experiments, correlated variations in the frequency and amplitude of the stimulators extended the user's perceptual response range compared to varying amplitude or frequency alone. In an adaptive, force-limited, pick-and-place manipulation task, the interface allowed users to control the grip forces more effectively than no feedback or binary feedback, which produced equivalent performance. A sorting experiment established that proportional tactile feedback enhances the user's ability to discriminate the relative properties of objects, such as weight. We conclude that correlated amplitude and frequency signals, simulating force in a remote environment, substantially improve teleoperation.
IEEE Transactions on Biomedical Engineering, 2015
Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This article presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, DC pressure, and AC pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.
A study on the role of cutaneous and kinesthetic force feedback in teleoperation is presented. Cutaneous cues provide less transparency than kinesthetic force, but they do not affect the stability of the teleoperation system. On the other hand, kinesthesia provides a compelling illusion of telepresence but affects the stability of the haptic loop. However, when employing common grounded haptic interfaces, it is not possible to independently control the cutaneous and kinesthetic components of the interaction. For this reason, many control techniques ensure a stable interaction by scaling down both kinesthetic and cutaneous force feedback, even though acting on the cutaneous channel is not necessary. We discuss here the feasibility of a novel approach. It aims at improving the realism of the haptic rendering, while preserving its stability, by modulating cutaneous force to compensate for a lack of kinesthesia. We carried out two teleoperation experiments, evaluating (1) the role of cutaneous stimuli when reducing kinesthesia and (2) the extent to which an over-actuation of the cutaneous channel can fully compensate for a lack of kinesthetic force feedback. Results showed that, to some extent, it is possible to compensate for a lack of kinesthesia with the aforementioned technique, without significant performance degradation. Moreover, users showed a high comfort level in using the proposed system.
2011
Human-robot interaction in a shared workspace permits and often even requires physical contact between humans and robots. A key technology for a safe physical human-robot interaction is the monitoring of contact forces by providing the robot with a tactile sensor as an artificial skin. This paper presents a pressure-sensitive skin for the mobile assistant robot LiSA (Life Science Assistant). It can be adapted to complex geometries and it can reliably measure contact on the entire robot body. The sensitive skin is equipped with integrated cushioning elements reducing the risk of dangerous injuries in physical human-robot interaction. Besides its safety function, the sensitive skin offers touch-based robot motion control that simplifies human-robot interaction. In the paper we describe the sensor setup and the hardware implementation on the mobile assistant robot LiSA and explain the strategies for a safe human-robot interaction. Beyond that we describe the algorithms enabling direct ...
2010
A prototype of a joystick where the kinesthetic feedback is substituted by tactile feedback is proposed. Tactile feedback is provided by a wearable device able to apply vertical stress to the fingertip in contact with the joystick. To test the device, rigid wall rendering is considered. Preliminary experiments show that the sensation of touching a virtual wall using the force feedback provided by the electric motor of the joystick is nearly indistinguishable from the sensation felt by the user using the tactile display only. The proposed device does not suffer from typical stability issues of teleoperation systems and is intrinsically safe.
Lecture Notes in Computer Science, 2014
In this work we present a novel haptic device that applies cutaneous force feedback to the forearm. We called it HapBand. It is composed of three moving plates, whose action on the forearm resembles the squeeze of a human hand. In order to validate the device, we carried out an experiment of remote tactile interaction. A glove, instrumented with five force sensors, registered the contact forces at the remote site, while the HapBand mimicked the registered sensation to the user's forearm. Results showed the HapBand to well resemble the squeezing sensation on the forearm.
Human-Robot Interaction, 2010
2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
Teleoperation of robotic systems for precise and delicate object grasping requires high-fidelity haptic feedback to obtain comprehensive real-time information about the grasp. In such cases, the most common approach is to use kinesthetic feedback. However, a single contact point information is insufficient to detect the dynamically changing shape of soft objects. This paper proposes a novel telemanipulation system that provides kinesthetic and cutaneous stimuli to the user's hand to achieve accurate liquid dispensing by dexterously manipulating the deformable object (i.e., pipette). The experimental results revealed that the proposed approach to provide the user with multimodal haptic feedback considerably improves the quality of dosing with a remote pipette. Compared with pure visual feedback, the relative dosing error decreased by 66% and task execution time decreased by 18% when users manipulated the deformable pipette with a multimodal haptic interface in combination with visual feedback. The proposed technology can be potentially implemented in delicate dosing procedures during the antibody tests for COVID-19, chemical experiments, operation with organic materials, and telesurgery.
A study on the role of cutaneous and kinesthetic force feedback in teleoperation is presented. Cutaneous cues provide less transparency than kinesthetic force, but they do not affect the stability of the teleoperation system. On the other hand, kinesthesia provides a compelling illusion of telepresence but affects the stability of the haptic loop. However, when employing common grounded haptic interfaces, it is not possible to independently control the cutaneous and kinesthetic components of the interaction. For this reason, many control techniques ensure a stable interaction by scaling down both kinesthetic and cutaneous force feedback, even though acting on the cutaneous channel is not necessary. We discuss here the feasibility of a novel approach. It aims at improving the realism of the haptic rendering, while preserving its stability, by modulating cutaneous force to compensate for a lack of kinesthesia. We carried out two teleoperation experiments, evaluating (1) the role of cutaneous stimuli when reducing kinesthesia and (2) the extent to which an overactuation of the cutaneous channel can fully compensate for a lack of kinesthetic force feedback. Results showed that, to some extent, it is possible to compensate for a lack of kinesthesia with the aforementioned technique, without significant performance degradation. Moreover, users showed a high comfort level in using the proposed system.
The advancements in the study of the human sense of touch are fueling the field of haptics. This is paving the way for augmenting the sensory perception during objects palpation in tele-surgery, and reproducing the information through tactile feedback. Here, we present a novel tele-palpation apparatus that enables the user to detect nodules with various distinct stiffness buried in an ad-hoc polymeric phantom. The contact force measured by the platform was encoded using a neuromorphic model and reproduced on the index fingertip of a remote user through a haptic glove embedding a piezoelectric disk. We assessed the effectiveness of this feedback in allowing nodule identification under two experimental conditions of real-time telepresence: In Line of Sight (ILS), where the platform was placed in the visible range of a user; and the more demanding Not In Line of Sight (NILS), with the platform being 50 km apart. We found that the entailed percentage of identification was higher for sti...
arXiv (Cornell University), 2023
Skill transfer from humans to robots is challenging. Presently, many researchers focus on capturing only position or joint angle data from humans to teach the robots. Even though this approach has yielded impressive results for grasping applications, reconstructing motion for object handling or fine manipulation from a human hand to a robot hand has been sparsely explored. Humans use tactile feedback to adjust their motion to various objects, but capturing and reproducing the applied forces is an open research question. In this paper we introduce a wearable fingertip tactile sensor, which captures the distributed 3-axis force vectors on the fingertip. The fingertip tactile sensor is interchangeable between the human hand and the robot hand, meaning that it can also be assembled to fit on a robot hand such as the Allegro hand. This paper presents the structural aspects of the sensor as well as the methodology and approach used to design, manufacture, and calibrate the sensor. The sensor is able to measure forces accurately with a mean absolute error of 0.21, 0.16, and 0.44 Newtons in X, Y, and Z directions, respectively.
Cutaneous haptic feedback can be used to enhance the performance of robotic teleoperation systems while guaranteeing their safety. Delivering ungrounded cutaneous cues to the human operator conveys in fact information about the forces exerted at the slave side and does not affect the stability of the control loop. In this work we analyze the feasibility, effectiveness, and implications of providing solely cutaneous feedback in robotic teleoperation. We carried out two peg-in-hole experiments, both in a virtual environment and in a real (teleoperated) environment. Two novel 3-degree-of-freedom fingertip cutaneous displays deliver a suitable amount of cutaneous feedback at the thumb and index fingers. Results assessed the feasibility and effectiveness of the proposed approach. Cutaneous feedback was outperformed by full haptic feedback provided by grounded haptic interfaces, but it outperformed conditions providing no force feedback at all. Moreover, cutaneous feedback always kept the system stable, even in the presence of destabilizing factors such as communication delays and hard contacts.
Human Computer Interaction, 2008
2012
In telemanipulation and 3D virtual interactions it is important to transmit force sen- sation from the remote or virtual environment to the operator. Due to the weak points (control issues, robustness, cost) of real force feedback devices, methods where force is rendered on non-native sensory channels have grounds. In this paper, a survey of the related literature is presented and the concept of sensor-bridging type cognitive infocommunications based force reflecting schemes is discussed. A complete experimental infrastructure with hardware and soft- ware components is built providing a background for the investigation of the proposed methods from practical usability aspects. This environment is utilized in a pilot experiment with human participants providing substantial observations on the usability of sensor-bridging type vibro- tactile force feedback methods. The test confirms that vibrotactile glove equipped with shaftless vibration motors can be successfully applied as tactile/...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.