Academia.eduAcademia.edu

Quantum error correction on infinite-dimensional Hilbert spaces

2009, Journal of Mathematical Physics

Abstract

We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. The generalization yields new classes of quantum error correcting codes that have no finite-dimensional counterparts. The error correction theory we develop begins with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of algebras of observables given by finite-dimensional von Neumann factors of type I. Our generalization allows for the correction of codes characterized by any von Neumann algebra and we give examples, in particular, of codes defined by infinite-dimensional algebras.