Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, International Journal of Computer …
…
5 pages
1 file
Handwriting recognition has attracted many researchers across the world. Recognition of online handwritten Hindi numerals is a goal of many research efforts in the pattern recognition field. This paper presents an online handwritten Hindi numeral recognition system using Support Vector Machines. Co-ordinate points of the input handwritten numeral are collected; various algorithms for pre-processing are applied for normalizing, resampling and interpolating missing points. Angle, curvature along with the x and y coordinates are extracted from the input handwritten numeral. The data obtained is then used for recognition using the kernel functions of SVM. The recognition accuracies are obtained on different schemes of data using the four kernel functions of SVM.
2013
Handwriting recognition has attracted many researchers across the world. Recognition of online handwritten Hindi numerals is a goal of many research efforts in the pattern recognition field. This paper presents an online handwritten Hindi numeral recognition system using Support Vector Machines. Co-ordinate points of the input handwritten numeral are collected; various algorithms for pre-processing are applied for normalizing, resampling and interpolating missing points. Angle, curvature along with the x and y coordinates are extracted from the input handwritten numeral. The data obtained is then used for recognition using the kernel functions of SVM. The recognition accuracies are obtained on different schemes of data using the four kernel functions of SVM.
2021
Handwriting recognition has been one of the most fascinating and challenging research areas in field of image processing and pattern recognition. It contributes enormously to the improvement of automation process. In this paper, a system for recognition of unconstrained handwritten Malayalam characters is proposed. A database of 10,000 character samples of 44 basic Malayalam characters is used in this work. A discriminate feature set of 64 local and 4 global features are used to train and test SVM classifier and achieved 92.24% accuracy.
arXiv (Cornell University), 2012
Handwritten Numeral recognition plays a vital role in postal automation services especially in countries like India where multiple languages and scripts are used Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the NN. A major problem in handwriting recognition is the huge variability and distortions of patterns. Elastic models based on local observations and dynamic programming such HMM are not efficient to absorb this variability. But their vision is local. But they cannot face to length variability and they are very sensitive to distortions. Then the SVM is used to estimate global correlations and classify the pattern. Support Vector Machine (SVM) is an alternative to NN. In Handwritten recognition, SVM gives a better recognition result. The aim of this paper is to develop an approach which improve the efficiency of handwritten recognition using artificial neural network
2006
A system for recognition of online handwritten characters has been presented for Indian writing systems. A handwritten character is represented as a sequence of strokes whose features are extracted and classified. Support vector machines have been used for constructing the stroke recognition engine. The results have been presented after testing the system on Devanagari and Telugu scripts.
In Sindhi Language, handwritten text feature extraction is such a challenging task for all scholars, because different people write in different styles or manners, to analyze each text is such a complex problem. Feature extraction of text segmentation, classifying each character and labelling for training data to recognize text for different handwritings and testing for analyzing features of providing handwritten text data .In this research, SVM (support vector machine) is used for analyzing and tokenizing each character or word of Sindhi Language text and transform into suitable information with efficiency & accuracy. The research is not only useful for improving the knowledge of Sindhi Handwritten Text Recognition but it can be beneficial for other recognition systems
2004
Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the NN [3]. Support Vector Machine (SVM) is an alternative to NN. In speech recognition (SR), SVM has been successfully used in the context of a hybrid SVM/HMM system. It gives a better recognition result compared to the system based on hybrid NN/HMM[4]. This paper describes the work in developing a hybrid SVM/HMM OHR system. Some preliminary experimental results of using SVM with RBF kernel on IRONOFF, UNIPEN and IRONOFF-UNIPEN character database are provided.
This paper describes a system for recognizing offline handwritten Tamil characters using support vector machine (SVM). Data samples are collected from different writers on A4 sized documents. They are scanned using a flat bed scanner at a resolution of 300 dpi and stored as gray-scale images. Various preprocessing operations are performed on the digitized image to enhance the quality of the image. Pixel densities are calculated for 64 different zones of the image and these values are used as the features of a character. These features are used to train the SVM. The SVM is tested for the first time to recognize handwritten Tamil characters. The system has achieved a very good recognition accuracy of 82.04% on the handwritten Tamil character database.
International Journal of Computer Applications, 2012
Recognition of Indian languages is a challenging problem. In Optical Character Recognition (OCR), acharacter or symbol to be recognized can be machine printed or handwritten characters/numerals. Several approaches in the past have been proposed that deal with problem of recognition of numerals/character depending on the type of feature extracted and way of extracting them. In this paper also a recognition system for isolated Handwritten Devanagari Numerals has been proposed. The proposed system is based on the division of sample image into sub-blocks and then in each sub-block Strength of Gradient is accumulated in 8 standard directions in which Gradient Direction is decomposed resulting in a feature vector with dimensionality of 200. Support Vector Machine (SVM) is used for classification. Accuracy of 99.60% has been obtained by using standard dataset provided by ISI (Indian Statistical Institute) Kolkata.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
… Processing (ICIIP), 2011 …, 2011
International Journal of Computer Applications, 2013
International Journal of Computer Applications, 2012