Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
4 pages
1 file
Monolayer graphite films, or graphene, have quasiparticle excitations that can be effectively described by (2+1)-dimensional quantum electrodynamics. Such a theory resembles more to quantum chromodynamics in some aspects, in particular, allowing for a non-trivial topological term in the gauge sector of the corresponding Lagrangian, the Chern-Simons term. In analogy to the chiral magnetic effect, proposed for quantum chromodynamics, we show that the presence of such topological gauge configurations associated to an external -in plane -magnetic field in a planar quantum elecrodynamical system, generates an electrical current along the magnetic field direction. This result is unexpected from the point of view of Maxwell equations and is uniquely due to the interaction of the gauge sector with the fermions.
A single atomic layer of carbon, graphene, has the low-energy "relativistic-like" gapless quasiparticle excitations which in the continuum approximation are described by quantum electrodynamics in 2+1 dimensions. The Diraclike character of charge carriers in graphene leads to several unique electronic properties which are important for applications in electronic devices. We study the gap opening in graphene following the ideas put forward by P. I. Fomin for investigation of chiral symmetry breaking and particle mass generation in quantum field theory.
Journal of Physics: Conference Series, 2011
Topological aspects of graphene are reviewed focusing on the massless Dirac fermions with/without magnetic field. Doubled Dirac cones of graphene are topologically protected by the chiral symmetry. The quantum Hall effect of the graphene is described by the Berry connection of a manybody state by the filled Landau levels which naturally possesses non-Abelian gauge structures. A generic principle of the topologically non trivial states as the bulk-edge correspondence is applied for graphene with/without magnetic field and explain some of the characteristic boundary phenomena of graphene. 1
Physics Reports-Review Section of Physics Letters, 2010
The physics of graphene is acting as a bridge between quantum field theory and condensed matter physics due to the special quality of the graphene quasiparticles behaving as massless two dimensional Dirac fermions. Moreover, the particular structure of the 2D crystal lattice sets the arena to study and unify concepts from elasticity, topology and cosmology. In this paper we analyze these connections combining a pedagogical, intuitive approach with a more rigorous formalism when required.
Arxiv preprint arXiv:1008.4901, 2010
Physical Review B, 2013
Gauge symmetries have been identified in graphene and associated with specific physical properties. For instance, the U (1) gauge group is related to electrodynamics in (1 + 2)-dimensional [(1 + 2)D] space-time and non-Abelian gauge groups can describe curvature and torsion. Here we demonstrate that the Dirac Lagrangian for massless electrons near the Dirac points is also invariant under the group SU (2) related to local spin rotations, leading to the correct spin-orbit interactions and a rigorous definition for the spin-current density. Furthermore, we computed the charge and spin conductivity within the framework of Kubo linear response theory, using the algebra of relativistic Dirac spinors in (1 + 2)D space-time. The minimal value of electrical conductivity is predicted to be πq 2 /h, in agreement with typical experimental findings.
From the tight-binding approximation, we solve for the spectrum of energy bands in monolayer graphene. Near the points K and K' where the energy dispersion is 0, we expand the Hamiltonian and reveal a linear Hamiltonian that resembles the Dirac equation for massless fermions where the velocity is approximately one three-hundreths the speed of light. We observe a property analogous to spin in regular spin one-half systems known as pseudospin. Lastly, we identify the unique Landau levels in graphene that characterize graphene's quantized conductance in the quantum Hall effect. This was a term paper for the MIT quantum physics III undergraduate course,
2007
We consider the relationship between the tight-binding Hamiltonian of the twodimensional honeycomb lattice of carbon atoms with nearest neighbor hopping only and the 2 + 1 dimensional Hamiltonian of quantum electrodynamics which follows in the continuum limit. We pay particular attention to the symmetries of the free Dirac fermions including spatial inversion, time reversal, charge conjugation and chirality. We illustrate the power of such a mapping by considering the effect of the possible symmetry breaking which corresponds to the creation of a finite Dirac mass, on various optical properties. In particular, we consider the diagonal AC conductivity with emphasis on how the finite Dirac mass might manifest itself in experiment. The optical sum rules for the diagonal and Hall conductivities are discussed.
The effects of gauge interactions in graphene have been analyzed up to now in terms of effective models of Dirac fermions. However, in several cases lattice effects play an important role and need to be taken consistently into account. In this paper we introduce and analyze a lattice gauge theory model for graphene, which describes tight binding electrons hopping on the honeycomb lattice and interacting with a three-dimensional quantum U (1) gauge field. We perform an exact Renormalization Group analysis, which leads to a renormalized expansion that is finite at all orders. The flow of the effective parameters is controlled thanks to Ward Identities and a careful analysis of the discrete lattice symmetry properties of the model. We show that the Fermi velocity increases up to the speed of light and Lorentz invariance spontaneously emerges in the infrared. The interaction produces critical exponents in the response functions; this removes the degeneracy present in the non interacting case and allow us to identify the dominant excitations. Finally we add mass terms to the Hamiltonian and derive by a variational argument the correspondent gap equations, which have an anomalous non-BCS form, due to the non trivial effects of the interaction.
Physics Reports, 2015
A range of quantum field theoretical phenomena driven by external magnetic fields and their applications in relativistic systems and quasirelativistic condensed matter ones, such as graphene and Dirac/Weyl semimetals, are reviewed. We start by introducing the underlying physics of the magnetic catalysis. The dimensional reduction of the low-energy dynamics of relativistic fermions in an external magnetic field is explained and its role in catalyzing spontaneous symmetry breaking is emphasized. The general theoretical consideration is supplemented by the analysis of the magnetic catalysis in quantum electrodynamics, chromodynamics and quasirelativistic models relevant for condensed matter physics. By generalizing the ideas of the magnetic catalysis to the case of nonzero density and temperature, we argue that other interesting phenomena take place. The chiral magnetic and chiral separation effects are perhaps the most interesting among them. In addition to the general discussion of the physics underlying chiral magnetic and separation effects, we also review their possible phenomenological implications in heavy-ion collisions and compact stars. We also discuss the application of the magnetic catalysis ideas for the description of the quantum Hall effect in monolayer and bilayer graphene, and conclude that the generalized magnetic catalysis, including both the magnetic catalysis condensates and the quantum Hall ferromagnetic ones, lies at the basis of this phenomenon. We also consider how an external magnetic field affects the underlying physics in a class of three-dimensional quasirelativistic condensed matter systems, Dirac semimetals. While at sufficiently low temperatures and zero density of charge carriers, such semimetals are expected to reveal the regime of the magnetic catalysis, the regime of Weyl semimetals with chiral asymmetry is realized at nonzero density. Finally, we discuss the interplay between relativistic quantum field theories (including quantum electrodynamics and quantum chromodynamics) in a magnetic field and noncommutative field theories, which leads to a new type of the latter, nonlocal noncommutative field theories.
Solid State Communications, 2009
There are two types of edge states in graphene with/without magnetic field. One is a quantum Hall edge state, which is topologically protected against small perturbation. The other is a chiral zero mode that is localized near the boundary with/without magnetic field. The latter is also topological but is guaranteed to be zero energy by the chiral symmetry, which is also responsible for massless Dirac like dispersion. Conceptual roles of the edge states are stressed and reviewed from a view point of the bulk-edge correspondence and the topological order.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Physical Review Letters, 2012
The European Physical Journal Special Topics, 2007
Physical Review B, 2008
Solid State Communications, 2007
The European Physical Journal B, 2015
Physical Review Letters, 2005
Progress of Theoretical Physics, 2012
Physical Review B, 2013
Physical Review B, 2010
Physical review letters, 2017
Low Temperature Physics, 2008
Journal of Physics A: Mathematical and Theoretical, 2012
arXiv: Mesoscale and Nanoscale Physics, 2019