Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2004, Pharmaceutical …
…
8 pages
1 file
To determine the in vivo biodistribution for differently charged poly(amidoamine) (PAMAM) dendrimers in B16 melanoma and DU145 human prostate cancer mouse tumor model systems. Methods. Neutral (NSD) and positive surface charged (PSD) generation 5 (d 5ס nm) PAMAM dendrimers were synthesized by using 3 H-labeled acetic anhydride and tested in vivo. Dendrimer derivatives were injected intravenously, and their biodistribution was determined via liquid scintillation counting of tritium in tissue and excretory samples. Mice were also monitored for acute toxicity. Results. Both PSD and NSD localized to major organs and tumor. Dendrimers cleared rapidly from blood, with deposition peaking at 1 h for most organs and stabilizing from 24 h to 7 days postinjection. Maximal excretion occurred via urine within 24 h postinjection. Neither dendrimer showed acute toxicity. Conclusions. Changes in the net surface charge of polycationic PAMAMs modify their biodistribution. PSD deposition into tissues is higher than NSD, although the biodistribution trend is similar. Highest levels were found in lungs, liver, and kidney, followed by those in tumor, heart, pancreas, and spleen, while lowest levels were found in brain. These nanoparticles could have future utility as systemic biomedical delivery devices.
2012
Carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles, comprised of a PAMAM dendrimer core grafted with chains of CMCht, have recently been proposed for intracellular drug delivery. In previous reports, these nanoparticles had lower levels of cytotoxicity when compared with traditional dendrimers. In this study, the short-term in vivo biodistribution of fluorescein isothiocyanate (FITC)-labeled CMCht/PAMAM dendrimer nanoparticles after intravenous (IV) injections in Wistar Han rats was determined. The brain, liver, kidney, and lung were collected at 24, 48, and 72 h after injection and stained with phalloidin-tetramethylrhodamine isothiocyanate (TRITC, red) and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, blue) to trace the nanoparticles within these tissues. The liver, kidney, and lung were also stained for hematoxylin and eosin to assess any morphological alterations of these organs. CMCht/PAMAM dendrimer nanoparticles were observed within the vascular space and parenchyma of liver, kidney, and lung and in the choroid plexus, after each injection period. No particles were observed in the
Journal of Bioactive and Compatible Polymers, 2011
Carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles, comprised of a PAMAM dendrimer core grafted with chains of CMCht, have recently been proposed for intracellular drug delivery. In previous reports, these nanoparticles had lower levels of cytotoxicity when compared with traditional dendrimers. In this study, the short-term in vivo biodistribution of fluorescein isothiocyanate (FITC)-labeled CMCht/PAMAM dendrimer nanoparticles after intravenous (IV) injections in Wistar Han rats was determined. The brain, liver, kidney, and lung were collected at 24, 48, and 72 h after injection and stained with phalloidin-tetramethylrhodamine isothiocyanate (TRITC, red) and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, blue) to trace the nanoparticles within these tissues. The liver, kidney, and lung were also stained for hematoxylin and eosin to assess any morphological alterations of these organs. CMCht/PAMAM dendrimer nanoparticles were observed within the vascular space and parenchyma of liver, kidney, and lung and in the choroid plexus, after each injection period. No particles were observed in the
Technology in cancer research & treatment, 2005
Our results indicate that the surface chemistry, composition, and 3-D structure of nanoparticles are critical in determining their in vivo biodistribution, and therefore the efficacy of nanodevice imaging and therapies. We demonstrate that gold/dendrimer nanocomposites in vivo, present biodistribution characteristics different from PAMAM dendrimers in a B16 mouse tumor model system. We review important chemical and biologic uses of these nanodevices and discuss the potential of nanocomposite devices to greatly improve cancer imaging and therapy, in particular radiation therapy. We also discuss major issues confronting the use of nanoparticles in the near future, with consideration of toxicity analysis and whether biodegradable devices are needed or even desirable.
Analytical and Bioanalytical Chemistry, 2012
This article presents a dose-response study of the effects of two types of third-generation (G3) and fourth-generation poly(amidoamine) (PAMAM) dendrimers on two cell lines (RTG-2 and H4IIE) by in vitro cytotoxicity assays with 3-(4,5-dimethylthizol-2yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) assays. We particularly investigated the potential cytotoxic effect of positive surface charge, which a cationic amino-terminated PAMAM dendrimer can display, on the marked ability of PAMAM dendrimers to cross the cell membrane compared with PAMAM dendrimers functionalized with chains of N-(2-hydroxydodecyl).
Pharmaceutics
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their ow...
Journal of Nanoparticle Research, 2014
Poly(amidoamine) (PAMAM) dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides, and antibodies. Amine-terminated PAMAM dendrimers are able to solubilize different families of hydrophobic drugs, but the cationic charges on dendrimer surface may disturb the cell membrane. Therefore, surface modification by PEGylation, acetylation, glycosylation, and amino acid functionalization is a convenient strategy to neutralize the peripheral amine groups and improve dendrimer biocompatibility. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Biodegradability, non-toxicity, non-immunogenicity, and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers in biomedical fields as dendrimer-based nanomedicine. The core-shell structure for PAMAM dendrimer.
International journal of environmental research and public health, 2018
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require tox...
Biopolymers, 2009
Nanomedicine : nanotechnology, biology, and medicine, 2018
Understanding the molecular features responsible for the plasma kinetics of surface-modified polyamido amine (PAMAM) dendrimers is critical to explore novel biomedical applications for these nanomaterials. In this report, polyethylene glycol (PEG) and folic acid (FA) were employed to obtain partially-substituted PAMAM dendrimers as model biocompatible nanomaterials with different size, charge and surface functionality. Cytotoxicity assays on HEK cells at 1-500 μM concentration confirmed that PEG and FA incorporation increased the cell viability of PAMAM-based nanomaterials. Measurements of plasma kinetics in vivo revealed that PEG-PAMAM has an extended circulation time in mice blood (71.7 min) over native PAMAM (53.3 min) and FA-PAMAM (41.8 min). Molecular dynamics simulations revealed a direct relationship between circulation time and dendrimer size, thus providing valuable evidence to increase understanding about the modulation of functional properties of PAMAM-based systems throu...
Journal of Applied Toxicology, 2015
The in vitro cytotoxic and intracellular oxidative stress responses to exposure to poly (propylene imine) (PPI) dendritic nanoparticles of increasing generation (number of repeated branching cycles) (G0-G4) were assessed in an immortal non-cancerous human keratinocyte cell-line (HaCaT). Confocal fluorescence microscopy with organelle staining was used to explore the uptake and intracellular trafficking mechanisms. A generation and dose dependent cytotoxic response was observed, increasing according to generation and therefore number of surface amino groups. A comparison of the cytotoxic response of G4 PPI and the related G4 Poly (amido amine) dendrimer indicates that the PPI with the same number of surface amino groups elicits a significantly higher cytotoxic response. The trend of cytotoxicity versus dendrimer generation and therefore size is discontinuous in the region of G2, however, indicating a difference in uptake mechanism for higher compared to lower generations. Whereas the higher generations elicit an oxidative stress response at short exposure times, the lower generations indicate and antioxidant response. Confocal microscopy indicates that, whereas they are prominent at early exposure times for the larger PPI dendrimers, no evidence of early stage endosomes was observed for lower generations of PPI. The results are consistent with an alternative uptake mechanism of physical diffusion across the semi-permeable cell membrane for the lower generation dendrimers and are discussed in terms of their implications for predictive models for nanotoxicology and design strategies for nanomedical applications.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Pharmaceutics
International journal of nanomedicine, 2017
Aristotle University Medical Journal, 2009
Journal of Controlled Release, 2006
Advanced Functional Materials, 2008
International Journal of Applied Pharmaceutics, 2018