Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2010, Journal of Machine Learning Research
PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easyto-use yet still powerful algorithms for machine learning tasks, including a variety of predefined environments and benchmarks to test and compare algorithms. Implemented algorithms include Long Short-Term Memory (LSTM), policy gradient methods, (multidimensional) recurrent neural networks and deep belief networks.
Information, 2020
Smarter applications are making better use of the insights gleaned from data, having an impact on every industry and research discipline. At the core of this revolution lies the tools and the methods that are driving it, from processing the massive piles of data generated each day to learning from and taking useful action. Deep neural networks, along with advancements in classical machine learning and scalable general-purpose graphics processing unit (GPU) computing, have become critical components of artificial intelligence, enabling many of these astounding breakthroughs and lowering the barrier to adoption. Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level libraries and clean high-level APIs. This survey offers insight into the field of machine learning with Python, taking a tour through important topics to identify some of the core hardware a...
Software Impacts
Various machine learning algorithms are developed for classification and prediction purposes. These models have been developed to provide solutions and ease our everyday lives in many fields. Neural networks are used extensively in all fields, yet developing them is a difficult and time-consuming process. In this paper, we discuss our package Modelly which provides interactive no-code as well as low code options for developing, testing, and tuning neural networks and their variants like XBNet. Further, we also provide tree-based models in our package that can also be built interactively. Our package aims to facilitate the entire process of developing machine learning and deep learning models to ease the process of developing real-world applications.
ACM Multimedia, 2017
Recently we have observed emerging uses of deep learning techniques in multimedia systems. Developing a practical deep learning system is arduous and complex. It involves labor-intensive tasks for constructing sophisticated neural networks, coordinating multiple network models, and managing a large amount of training-related data. To facilitate such a development process, we propose TensorLayer which is a Python-based versatile deep learning library. TensorLayer provides high-level modules that abstract sophisticated operations towards neuron layers, network models, training data and dependent training jobs. In spite of offering simplicity, it has transparent module interfaces that allows developers to flexibly embed low-level controls within a backend engine, with the aim of supporting fine-grain tuning towards training. Real-world cluster experiment results show that TensorLayer is able to achieve competitive performance and scalability in critical deep learning tasks. TensorLayer was released in September 2016 on GitHub. Since after, it soon become one of the most popular open-sourced deep learning library used by researchers and practitioners.
ArXiv, 2016
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of...
2020
Deep reinforcement learning has been one of the fastest growing fields of machine learning over the past years and numerous libraries have been open sourced to support research. However, most codebases have a steep learning curve or limited flexibility that do not satisfy a need for fast prototyping in fundamental research. This paper introduces Tonic, a Python library allowing researchers to quickly implement new ideas and measure their importance by providing: 1) a collection of configurable modules such as exploration strategies, replays, neural networks, and updaters 2) a collection of baseline agents: A2C, TRPO, PPO, MPO, DDPG, D4PG, TD3 and SAC built with these modules 3) support for the two most popular deep learning frameworks: TensorFlow 2 and PyTorch 4) support for the three most popular sets of continuous-control environments: OpenAI Gym, DeepMind Control Suite and PyBullet 5) a large-scale benchmark of the baseline agents on 70 continuous-control tasks 6) scripts to expe...
Journal of Soft Computing and Data Mining, 2021
Python is one of the most widely adopted programming languages, having replaced a number of those in the field. Python is popular with developers for a variety of reasons, one of which is because it has an incredibly diverse collection of libraries that users can run. The most compelling reasons for adopting Keras come from its guiding principles, particularly those related to usability. Aside from the simplicity of learning and model construction, Keras has a wide variety of production deployment options and robust support for multiple GPUs and distributed training. A strong and easy-to-use free, open-source Python library is the most important tool for developing and evaluating deep learning models. The aim of this paper is to provide the most current survey of Keras in different aspects, which is a Python-based deep learning Application Programming Interface (API) that runs on top of the machine learning framework, TensorFlow. The mentioned library is used in conjunction with Ten...
International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022
Deep Learning Applications are being applied in various domains in recent years. Training a deep learning model is a very time consuming task. But, many open source frameworks are available to simplify this task. In this review paper we have discussed the features of some popular open source software tools available for deep learning along with their advantages and disadvantages. Software tools discussed in this paper are Tensorflow, Keras, Pytorch, Microsoft Cognitive Toolkit (CNTK).
IJRASET, 2021
Python is the finest, easily adoptable object-oriented programming language developed by Guido van Rossum, and first released on February 20, 1991 It is a powerful high-level language in the recent software world. In this paper, our discussion will be an introduction to the various Python tools applicable for Machine learning techniques, Data Science and IoT. Then describe the packages that are in demand of Data science and Machine learning communities, for example-Pandas, SciPy, TensorFlow, Theano, Matplotlib, etc. After that, we will move to show the significance of python for building IoT applications. We will share different codes throughout an example. To assistance, the learning experience, execute the following examples contained in this paper interactively using the Jupiter notebooks.
This project explores deep artificial neural networks and their use with Google’s open-source library TensorFlow. We begin by laying the theoretical foundations of these networks, covering their motivation, techniques used and some mathematical aspects of their training. Special attention is paid to various regularisation methods which are applied later on. After that, we delve into the computational approach, explaining TensorFlow’s operation principles and the necessary concepts for its use, namely the computational graph, variables and execution sessions. Through the first example of a deep network, we illustrate the theoretical and TensorFlow-related elements described earlier, applying them to the problem of classifying flowers of the Iris species. We then pave the way for the problem of image classification: we comment several higher-level TensorFlow wrappers (focusing on Slim, a library born within Google itself which is used in the last part of the project), describe the basic principles of convolutional networks and introduce the MNIST problem (automatic handwritten digit recognition), outlining its history and current state of the art. Finally, we create three convolutional networks to tackle MNIST, detailing how such a task is approached with TensorFlow and the workflow followed. All three networks reach over 98% classification accuracy, going as far as 99.52% in the case of the best one. We conclude with an explanation of the obtained results, relating the structures of the different networks with their performance and training cost.
Frontiers in Neuroinformatics, 2021
More than half of the Top 10 supercomputing sites worldwide use GPU accelerators and they are becoming ubiquitous in workstations and edge computing devices. GeNN is a C++ library for generating efficient spiking neural network simulation code for GPUs. However, until now, the full flexibility of GeNN could only be harnessed by writing model descriptions and simulation code in C++. Here we present PyGeNN, a Python package which exposes all of GeNN's functionality to Python with minimal overhead. This provides an alternative, arguably more user-friendly, way of using GeNN and allows modelers to use GeNN within the growing Python-based machine learning and computational neuroscience ecosystems. In addition, we demonstrate that, in both Python and C++ GeNN simulations, the overheads of recording spiking data can strongly affect runtimes and show how a new spike recording system can reduce these overheads by up to 10×. Using the new recording system, we demonstrate that by using PyGeNN on a modern GPU, we can simulate a full-scale model of a cortical column faster even than real-time neuromorphic systems. Finally, we show that long simulations of a smaller model with complex stimuli and a custom three-factor learning rule defined in PyGeNN can be simulated almost two orders of magnitude faster than real-time.
TensorFlow [1] is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition , computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the Ten-sorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.
Python for Scientific Computing and Artificial Intelligence, 2023
Python for Scientific Computing and Artificial Intelligence is split into 3 parts: in Section 1, the reader is introduced to the Python programming language and shown how Python can aid in the understanding of advanced High School Mathematics. In Section 2, the reader is shown how Python can be used to solve real-world problems from a broad range of scientific disciplines. Finally, in Section 3, the reader is introduced to neural networks and shown how TensorFlow (written in Python) can be used to solve a large array of problems in Artificial Intelligence (AI). This book was developed from a series of national and international workshops that the author has been delivering for over twenty years. The book is beginner friendly and has a strong practical emphasis on programming and computational modelling. Features: • No prior experience of programming is required. • Online GitHub repository available with codes for readers to practice. • Covers applications and examples from biology, chemistry, computer science, data science, electrical and mechanical engineering, economics, mathematics, physics, statistics and binary oscillator computing. • Full solutions to exercises are available as Jupyter notebooks on the Web.
Frontiers in Neuroinformatics, 2018
The development of spiking neural network simulation software is a critical component enabling the modeling of neural systems and the development of biologically inspired algorithms. Existing software frameworks support a wide range of neural functionality, software abstraction levels, and hardware devices, yet are typically not suitable for rapid prototyping or application to problems in the domain of machine learning. In this paper, we describe a new Python package for the simulation of spiking neural networks, specifically geared toward machine learning and reinforcement learning. Our software, called BindsNET 1 , enables rapid building and simulation of spiking networks and features user-friendly, concise syntax. BindsNET is built on the PyTorch deep neural networks library, facilitating the implementation of spiking neural networks on fast CPU and GPU computational platforms. Moreover, the BindsNET framework can be adjusted to utilize other existing computing and hardware backends; e.g., TensorFlow and SpiNNaker. We provide an interface with the OpenAI gym library, allowing for training and evaluation of spiking networks on reinforcement learning environments. We argue that this package facilitates the use of spiking networks for large-scale machine learning problems and show some simple examples by using BindsNET in practice.
BMC …, 2007
Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes commu- nication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization, and data-management tools. PyNN increases the reliability of modelling stud- ies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN.
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algo- rithms for medium-scale supervised and unsupervised problems. This package focuses on bring- ing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependen- cies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.
Cornell University - arXiv, 2013
Pylearn2 is a machine learning research library. This does not just mean that it is a collection of machine learning algorithms that share a common API; it means that it has been designed for flexibility and extensibility in order to facilitate research projects that involve new or unusual use cases. In this paper we give a brief history of the library, an overview of its basic philosophy, a summary of the library's architecture, and a description of how the Pylearn2 community functions socially.
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. In this paper, main topics about deep learning have been covered. The relationship between artificial intelligence, machine learning and deep learning has been mentioned briefly. Detailed information about deep learning has been given, ie. History and future of deep learning. Artificial neural networks has been reviewed. The importance of GPU and deep learning in big data have been shown deeply. Using areas of deep learning have been explained. Benefits and weaknesses of deep learning have been covered. The informations about deep learning algorithms, libraries and tools have been given.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.