Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, Genes & Nutrition
…
11 pages
1 file
Protein acetylation status results from a balance between histone acetyltransferase and histone deacetylase (HDAC) activities. Alteration of this balance leads to a disruption of cellular integrity and participates in the development of numerous diseases, including cancer. Therefore, modulation of these activities appears to be a promising approach for anticancer therapy. Histone deacetylase inhibitors (HDACi) are epigenetically active drugs that induce the hyperacetylation of lysine residues within histone and non-histone proteins, thus affecting gene expression and cellular processes such as proteinprotein interactions, protein stability, DNA binding and protein sub-cellular localization. Therefore, HDACi are promising anti-tumor agents as they may affect the cell cycle, inhibit proliferation, stimulate differentiation and induce apoptotic cell death. Over the last 30 years, numerous synthetic and natural products, including a broad range of dietary compounds, have been identified as HDACi. This review focuses on molecules from natural origins modulating HDAC activities and presenting promising anticancer activities.
Molecules, 2019
Histone deacetylases (HDACs) are enzymes that can control transcription by modifying chromatin conformation, molecular interactions between the DNA and the proteins as well as the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the lysine residues. Also, HDACs have been implicated in the post transcriptional process through the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi) constitute a promising class of pharmacological drugs to treat various chronic diseases, including cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and development of novel HDACi from natural products, which are known to affect the activation of various oncogenic molecules, has attracted significant attention over the last decade. This review will briefly emphasize the potential of natur...
Current protein & peptide science, 2018
Acetylation and deactylation of histones are important determinants of gene expression. Histone deacetylases (HDACs) remove acetyl groups from histones leading to suppression and regulation of epigenetic gene expression. Current studies have demonstrated that HDAC-inhibitors (HDACIs) inducing histone hyperacetylation are promising novel agents in cancer treatment. HDACIs have been shown to have significant anticancer effects with negligible toxicity in the preclinical studies. Ongoing clinial trials are being performed to investigate the efficiency of HDACIs in human cancers. We have reviewed the current knowledge about the molecular mechanisms of action of HDACIs and the outcome of clinical studies using HDACIs in the therapy of several cancers.
Nutrients, 2018
Cancer initiation and progression are the result of genetic and/or epigenetic alterations. Acetylation-mediated histone/non-histone protein modification plays an important role in the epigenetic regulation of gene expression. Histone modification is controlled by the balance between histone acetyltransferase and (HAT) and histone deacetylase (HDAC) enzymes. Imbalance between the activities of these two enzymes is associated with various forms of cancer. Histone deacetylase inhibitors (HDACi) regulate the activity of HDACs and are being used in cancer treatment either alone or in combination with other chemotherapeutic drugs/radiotherapy. The Food and Drug Administration (FDA) has already approved four compounds, namely vorinostat, romidepsin, belinostat, and panobinostat, as HDACi for the treatment of cancer. Several other HDACi of natural and synthetic origin are under clinical trial for the evaluation of efficiency and side-effects. Natural compounds of plant, fungus, and actinomy...
Molecules
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could preve...
Molecular Carcinogenesis, 2006
In cancer cells, an imbalance often exists between histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, and various drug companies are actively seeking competitive HDAC inhibitors for chemotherapeutic intervention. Cancer cells appear to be more sensitive than nontransformed cells to HDAC inhibitors, which disrupt the cell cycle and induce apoptosis via derepression of genes such as P21 and BAX. However, in the search for potent HDAC inhibitors with cancer therapeutic potential, a tendency exists to overlook or dismiss weak ligands that could prove effective in cancer prevention. Butyrate, diallyl disulfide (DADS), and sulforaphane (SFN) are three dietary agents that exhibit HDAC inhibitory activity in vitro and/or in vivo, and other such dietary agents probably will be discovered that affect HDAC activity. We make the distinction between 'pharmacologic' agents that potently derepress gene expression, during therapeutic intervention, and dietary HDAC inhibitors that, as weak ligands, might subtly regulate the expression of genes involved in cell growth and apoptosis. An important issue for future study is to determine the extent to which dietary HDAC inhibitors, by modulating genes such as p21 and Bax, enable normal, nontransformed cells to respond most effectively to external stimuli and toxic insults.
Archivum immunologiae et therapiae experimentalis, 2017
In the past few years, basic and clinical scientists have witnessed landmark achievements in many research projects, such as those conducted by the US National Institutes of Health Roadmap Epigenomics Mapping Consortium, the International Human Epigenome Consortium, The Cancer Genome Atlas Network and the International Cancer Genome Consortium, which have provided near-complete resolution of epigenetic landscape in different diseases. Furthermore, genome sequencing of tumors has provided compelling evidence related to frequent existence of mutations in readers, erasers and writers of epigenome in different cancers. Histone acetylation is an intricate mechanism modulated by two opposing sets of enzymes and deeply studied as a key biological phenomenon in 1964 by Vincent Allfrey and colleagues. The research group suggested that this protein modification contributed substantially in transcriptional regulation. Subsequently, histone deacetylases (HDACs), histone acetyltransferases and a...
Pharmaceutics, 2022
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Acc...
Current Nutrition & Food Science, 2010
Acetylation and deacetylation of lysine residues on histones, which are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are epigenetic modifications that play a very important role in the regulation of gene transcription. Perturbation of the balance between histone acetylation and deacetylation leads to a myriad of diseases, including cancer, AIDS, malaria, neurodegenerative diseases, and diabetes. HATs and HDACs have recently been recognized as key targets for chemoprevention and drug discovery, and numerous natural and synthetic compounds have been screened in order to identify promising regulators of subtle balance between histone acetylation and deacetylation. Here, we present dietary compounds and other natural products that have emerged as potent HAT or HDAC activity modulators, and we discuss their current and future applications as chemopreventive or therapeutic agents.
2015
Histone Deacetylase (HDAC) inhibitors are an exciting new class of drugs that are targeted as anti- cancer agents. These compounds can induce growth arrest, apoptosis and/ or terminal differentiation in a variety of solid and hematological neoplasms in patients with advanced disease. Accumulation of acetylated histones in both normal and tumour cells can be used as a marker of biological activity. Hydroxamic acid based compounds are among the most promising HDAC inhibitors as potential anti-cancer drugs. There is still much to be understood about the family of HDACs, including the varying functions of different HDACs and the range of HDAC substrates. The development of selective HDAC inhibitors might be important in defining their biological role and potential as therapeutic agents. Clinically, the optimal dose, timing and duration of therapy, as well as the most appropriate agents to combine with HDAC inhibitors, are still to be defined.
Antioxidants & Redox Signaling, 2012
Significance: Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, ZolinzaÔ), and the cyclic peptide, depsipeptide (Romidepsin, IstodaxÔ), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. Recent Advances: The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. Critical Issues: Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. Future Directions: Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification. Antioxid. Redox Signal. 17, 340-354.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Recent Patents on Anti-Cancer Drug Discovery, 2007
Molecular Pharmacology, 2005
Anti-Cancer Agents in Medicinal Chemistry, 2007
Oncology Reports, 2006
Molecules (Basel, Switzerland), 2016
Bioorganic & Medicinal Chemistry Letters, 2006
ACS Medicinal Chemistry Letters, 2010
Bioorganic & Medicinal Chemistry, 2021
Current Medicinal Chemistry, 2020
Medicinal research …, 2005
Targeted Oncology, 2006
Bioorganic & Medicinal Chemistry Letters, 2014
Medicinal Chemistry Research